結(jié)合保角變換的優(yōu)化模擬鏡象法解多種截面形狀同軸線的特性阻抗
THE SOLUTION OF THE CHARACTERISTIC IMPEDANCE OF ARBITRARILY SHAPED COAXIAL TRANSMISSION LINES BY USING THE OPTIMIZED SIMULATED IMAGE-CONFORMAL MAPPING METHOD
-
摘要: 介紹一種計(jì)算多種截面形狀同軸線的新方法結(jié)合保角變換的優(yōu)化模擬鏡象法。此法計(jì)算量小、精確度高,并能進(jìn)行誤差范圍計(jì)算。列出對(duì)內(nèi)圓外方、偏心內(nèi)圓外方和內(nèi)帶形外圓等九種同軸線特性阻抗的計(jì)算結(jié)果并與其它文獻(xiàn)結(jié)果進(jìn)行了比較。
-
關(guān)鍵詞:
- 保角變換; 優(yōu)化模擬鏡象法; 特性阻抗
Abstract: A new method, the optimized simulated image method in combination with conformal mapping, is introduced to calculate the characteristic impedance of arbitrarily shaped coaxial transmission lines. It is of small calculating amount and high accuracy, and the error range can also be estimated. The calculating results of the characteristic impedances of nine coaxial lines, such as concentric, eccentric circular inner and square outer conductors, strip inner and circular outer conductors, are tabulated and compared with data from other papers. -
Chow Y L, et al. Proc. IEEE, 1979, 26(1):123-125.[2]方大綱,劉次由.微波理論與技術(shù),北京:兵器工業(yè)出版社,1987,第四章.[3]Pan S. IEEE Trans. on MTT, 1988, MTT-36(5):917-921.[4]徐善駕,等.電子科學(xué)學(xué)刊,1992,14(4): 396-403.[5]Wheeler H A. IEEE Trans. on MTT, 1980, MTT-28(2):73-83.[6]林為干.電磁場(chǎng)工程.北京:人民郵電出版社,1980,第一章.[7]Gunston M. A. Microwave Transmission Line Impedance Data, New York: Van NostrandReinhold, 1972, Chap. 4.[8]Oberhettinger F, et al. Applications of Elliptic Functions in Physics and Technology.New York: Springer Verlag, 1949.[9]潘生根.電子學(xué)報(bào),1988,16(6): 15-20.[10]Lin W. IEEE Trans. on MTT, 1982, MTT-30(11):1981-1988.[11][11][12]Sheahadri T K, Rajaian K. Proc[J].IEEE.1982, 70(1):82-83[13]Riblet H J. IEEE Trans. on MTT, 1983, MTT-31(10): 841-844.[14]Lin W. IEEE Trans. on MTT, 1985, MTT-33(6):545-555.[15]潘生根.中國(guó)科學(xué),1986,29(4): 999-1008.[16]Epele L N, et al. Proc[J].IEEE.1984, 72(2):223-224 -