短時傅里葉變換和擬Wigner分布最佳窗函數(shù)
THE OPTIMAL WINDOW FUNCTIONS OF SHORT TIME FOURIER TRANSFORM AND PSEUDO-WIGNER DISTRIBUTION
-
摘要: 短時傅里葉變換和擬Wigner分布是應(yīng)用最廣泛的兩種時頻分析工具,其窗函數(shù)的選擇是其應(yīng)用的前提,對此仍有待深入研究。本文詳細(xì)研究了其窗函數(shù)的選取準(zhǔn)則,給出了在最佳頻率分辨率意義上的最佳窗函數(shù)。Abstract: Short time Fourier transform and pseudo-Wigner distribution are two most useful tools in time-frequency analysis, the choice of window functions is the base for their applications, which require deep study. The criteria of window functions are discussed in detail, and the optimal length of window is obtained by means of optimal frequency resolutions.
-
Cohen L. Time-frequency distribution: A review[J].Proc. IEEE.1989, 77(7):941-981[2]Mann S, Haykin S. The chirplet transform: Physical considerations[J].IEEE Trans. on. SP.1995, 43(11):2745-2761[3]Jone D L, Parks T W. A hi沙resolution data-adaptive time-frequency represention, IEEE Trans on ASSP, 1990, ASSP-38(12): 2127-2135.[4]Andrieux J C, Feix M R, Mourgues G, Bertrand P, Izrar B, Nguyen V T. optimal smoothing of the Wigner-Ville distribution, IEEE Trans. on ASSP, 1987, ASSP-35(6): 764-769.[5]Barber N F, Ursell F. The response of a resonent system to a gliding tone. Phili. Mag. 1948, 39(1): 345-361.[6]Dahlquist G著.包雪松譯.數(shù)值方法高等教育出版社.1990, 140.[7]Boashash B. Estimating and interpreting the instantaneous frequency of a signal, Part 1: Funda-[8]mentals and Part 2: Algorithms and applications. Proc[J].IEEE.1992, 80(4):520-538[9]孫曉兵.非平德信號的時頗分析方法及其應(yīng)用:[博士論文].西安:西安電子科技大學(xué),1996. -
計量
- 文章訪問數(shù): 3069
- HTML全文瀏覽量: 140
- PDF下載量: 812
- 被引次數(shù): 0