共軛對(duì)稱數(shù)據(jù)的DFT及其FFT算法
DFT, FFT ALGORITHM FOR A COMPLEX CONJUGATE-SYMMETRIC SEQUENCE
-
摘要: 該文對(duì)共軛對(duì)稱復(fù)數(shù)序列的離散傅里葉交換(DFT)及其快速傅里葉變換(FFT)算法進(jìn)行了研究,獲得共軛對(duì)稱序列的DFT具有虛部為零的性質(zhì),并開發(fā)出適用于共軛對(duì)稱數(shù)據(jù)的FFT算法。該算法與傳統(tǒng)FFT算法相比減少了一半的計(jì)算量和存儲(chǔ)單元,運(yùn)算速度提高了一倍。
-
關(guān)鍵詞:
- 離散傅里葉變換; 快速傅里葉交換; 對(duì)稱數(shù)據(jù)
Abstract: The discrete Fourier transform (DFT) and fast Fourier transform (FFT) for com-plex conjugate-symmetric input data are studied in this paper. The DFT of a complex conjugate-symmetric sequence has the nature that its imaginary part is zero. An efflcient FFT algorithm is developed for such a sequence. It reduces the computation and storage requirements by half comparing to the traditional FFT algorithm. -
H.V.Sorensen,et al.,Real-valued fast Fourier transform algorithms,IEEE Trans.on ASSP,1987,ASSP-35(6),849-863.[2]Chen Jianping,H.V.Sorensen,An efficient FFT algorithm for real-symmetric data,Proc.IEEE ICASSP,San Fronsisco,1992,vol.5,17-20.[3]Lu Chao,R.Tolimiteri,New algorithm for the FFT computation of symmetric and translational complex conjugate sequences, Proc.IEEE ICASSP,San Fronsisco,1992,Vol.5,13-16.[4]A.V.Oppenheim,R.W.Schafer,Discrete-Time Signal Processing,Englewood Cliffs,New Jersy,Prentice-Hall,1989,581-609.[5]陳建平,H.V.sorensen,復(fù)數(shù)、實(shí)數(shù)及實(shí)對(duì)稱數(shù)據(jù)下Bruun FFT的實(shí)現(xiàn),蘇州大學(xué)學(xué)報(bào)(自然科學(xué)),1995,11(4),107-114.[6]陳建平,曹清林.沈世德,對(duì)稱連桿曲線的FFT應(yīng)用研究,數(shù)據(jù)采集與處理,1997,12(3),243-246. -
計(jì)量
- 文章訪問數(shù): 4545
- HTML全文瀏覽量: 255
- PDF下載量: 579
- 被引次數(shù): 0