最佳小波調(diào)制
OPTIMAL WAVELET MODULATION
-
摘要: 小波分析的理論正在逐步走向通信領域,小波調(diào)制因其頻譜利用率的優(yōu)勢而受到重視。以往研究較多的是Daubechies和Battle-Lemarie小波系列,本文從頻譜利用率的角度出發(fā),討論如何設計用FIR濾波器實現(xiàn)的最佳正交小波和尺度函數(shù),給出了設計方法和結果。通過比較我們得出這樣的結論:經(jīng)過最優(yōu)化設計,在同樣的實現(xiàn)復雜性條件下,小波調(diào)制的頻譜利用率有了明顯的提高,因而可以用較簡單的FIR濾波器獲得較好的頻譜性能。Abstract: Wavelet analysis has being gradually applied to communications, especially, wavelet modulation receives much considerations for its bandwidth efficiency. This paper discusses how to design optimal orthogonal wavelet and scaling functions which are generated by FIR filters, from the view point of bandwidth efficiency, the designing method and results are given in details. By comparison, the bandwidth efficiency of wavelet modulation has improved significantly for the same system complexity after optimization, so relatively good spectral performance using simple FIR filters can be obtained.
-
Erdol N, Bao F, Chen Z. Wavelet Modulation: A Prototype for Digital Communication Systems.Southcon, Piscataway, USA: 1995, 168-171.[2]Daubechies I. Orthonormal bases of compactly supported wavelets. Commun. Pure Appl. Math.1988, 41(7): 909-996.[3]Mallat S. A theory of multiresolution signal decomposition: The wavelet representation[J].IEEE Trans. Patt. Anal. and Machine Intelli.1989, 11(7):674-693[4]Gandhi P P, Rao S S, Pappu R S. Wavelets for baseband coding of waveforms. Globecom, San Francisco, USA: 1994, 363-367.[5]Morris J M, Akunuri V. Minimum duration orthonormal wavelets[J].Opt. Eng.1996, 35(7):2079-2087 -
計量
- 文章訪問數(shù): 1896
- HTML全文瀏覽量: 66
- PDF下載量: 424
- 被引次數(shù): 0