廣義門(mén)限蔡斯算法
THE GENERALIZED THRESHOLD CHASE ALGORITHMS
-
摘要: 本文提出了三種廣義的門(mén)限蔡斯算法:GTC Ⅰ、GTC Ⅱ和 STC。這些算法是廣義最小距離譯碼(GMD)算法與蔡斯算法的結(jié)合,它們的譯碼錯(cuò)誤概率與蔡斯算法的非常接近,但譯碼速度要快,特別當(dāng)信噪比高時(shí)更是如此,因而有較大的實(shí)用價(jià)值。文中最后給出了計(jì)算機(jī)模擬結(jié)果,證實(shí)了這些算法的優(yōu)越性。
-
關(guān)鍵詞:
Abstract: Three generalized threshold Chase algorithms called GTC Ⅰ, GTC Ⅱ and STC are proposed in this paper. The computing speeds of these algorithms are faster than that of the ordinary Chase algorithm, and the probabilities of the decoding error of these algorithms are the same as that of the ordinary Chase algolithm. Finally, the performances of these algorithms and the ordinary Chase algorithm for (15, 7, 5) binary BCH codes are compared by using computer simulations -
A.J.Viterbi and J. K. Omura, Principle of Digital Communication Coding, McGraw-Hill Book Co.,1979, P.101.[2]R. M. F.Goodman and A. F. T. Winfield IEE Proc. pt. F, 128(1981), 179.[3]J. L. Massey, Threshold Decoding Codes, MIT Press, Cambridge, MA, 1963.[4]G. D. Forney, Jr.,Concatenated Codes, .MIT Press, Cambridge, MA, 1966.[5]D.Chase, IEEE Trans. on IT, IT-18(1972), 170.[6]C. M. Hachett, IEEE Trans. on COM, COM-29(1981), 909.[7] C. C. Yu and D. J. Costello, Jr., IEEE Trans. on IT, IT-26(1980),238.[7]G. C. Clark, Jr. and J. B. Cain,Error-Correction Coding for Digital Communications, Harris Corporation, Melbourne, Florida, 1982, p. 28. -
計(jì)量
- 文章訪問(wèn)數(shù): 1703
- HTML全文瀏覽量: 102
- PDF下載量: 524
- 被引次數(shù): 0