未知陣列流形條件下波達(dá)方向一多普勒頻率盲估計(jì)方法
BLIND ESTIMATES OF DOA-DOPPLER FREQUENY WITH UNKNOWN ARRAY MANIFOLD
-
摘要: 本文研究陣列信號(hào)高分辨波達(dá)方向-多普勒頻率二維估計(jì)問題,在未精確已知陣列流形條件下,利用到達(dá)波信號(hào)的多普勒頻率,提出了一種波達(dá)方向-多普勒頻率盲估計(jì)的新方法。理論分析和計(jì)算機(jī)仿真結(jié)果表明此方法在實(shí)際陣列存在增益和相位誤差時(shí)亦有效,而且與現(xiàn)有二維估計(jì)算法相比,其運(yùn)算量較小。Abstract: A novel blind estimate of direction of arrival (DOA) and Doppler frequency with unknown array manifold is proposed, employing Doppler frequency difference between a successive pulses as rotational parameter. The effectiveness of the new method is confirmed by computer simulations. Compared with the existing two-dimensional frequency estimates, the computation load of the proposed method can be saved greatly.
-
Schmidt R. Multiple emitter location and signal parameter estimation, IEEE Trans. on AP, 1986, AP-34(3): 267-280.[2]ZisKind I, Wax M. Maximum likelihood localization of multiple sources by alternating projection. IEEE Trans, on ASSP, 1988, ASSP-36(10): 1553-1560.[3]RocKah Y, Schultheiss P M. Array shape calibration using sources in unknown locations Part I: far field sources. IEEE Trans on ASSP, 1987, ASSP-35(3): 286-299.[4]Weiss A J, Fridlander B. Eigenstructure methods for direction finding with sensor gain and phase uncertanties. Circuits Systems and Signal Processing, 1990, 9(3): 272-300.[5]Roy R, Kailath T. ESPRIT-estimation of signal parameter via rotational invariance technique. IEEE[6]Trans. on ASSP, 1989, ASSP-37(7): 984-995.[7]Capon J. High resolution frequency-wavenumer spectrum analysis[J].Proc. IEEE.1969, 57(8):1408-1418[8]Sacchini J J, Steedly W M, Moses R L. Two-dimensional Prony modeling and parameter estimation.IEEE Trans. on SP, 1993, SP-41(11): 3127-3137. -
計(jì)量
- 文章訪問數(shù): 2383
- HTML全文瀏覽量: 152
- PDF下載量: 436
- 被引次數(shù): 0