一级黄色片免费播放|中国黄色视频播放片|日本三级a|可以直接考播黄片影视免费一级毛片

高級(jí)搜索

留言板

尊敬的讀者、作者、審稿人, 關(guān)于本刊的投稿、審稿、編輯和出版的任何問(wèn)題, 您可以本頁(yè)添加留言。我們將盡快給您答復(fù)。謝謝您的支持!

姓名
郵箱
手機(jī)號(hào)碼
標(biāo)題
留言內(nèi)容
驗(yàn)證碼

用于信號(hào)逼近的自適應(yīng)時(shí)延小波神經(jīng)網(wǎng)絡(luò)

何振亞 李文化 蔚承建

何振亞, 李文化, 蔚承建. 用于信號(hào)逼近的自適應(yīng)時(shí)延小波神經(jīng)網(wǎng)絡(luò)[J]. 電子與信息學(xué)報(bào), 1998, 20(5): 604-610.
引用本文: 何振亞, 李文化, 蔚承建. 用于信號(hào)逼近的自適應(yīng)時(shí)延小波神經(jīng)網(wǎng)絡(luò)[J]. 電子與信息學(xué)報(bào), 1998, 20(5): 604-610.
He Zhenya, Li Wenhua, Wei Chengjian . AN ADAPTIVE TIME DELAY WAVELET NEURAL NETWORK FOR SIGNAL APPROXIMATION[J]. Journal of Electronics & Information Technology, 1998, 20(5): 604-610.
Citation: He Zhenya, Li Wenhua, Wei Chengjian . AN ADAPTIVE TIME DELAY WAVELET NEURAL NETWORK FOR SIGNAL APPROXIMATION[J]. Journal of Electronics & Information Technology, 1998, 20(5): 604-610.

用于信號(hào)逼近的自適應(yīng)時(shí)延小波神經(jīng)網(wǎng)絡(luò)

AN ADAPTIVE TIME DELAY WAVELET NEURAL NETWORK FOR SIGNAL APPROXIMATION

  • 摘要: 小波神經(jīng)網(wǎng)絡(luò)是一種強(qiáng)有力的函數(shù)逼近工具。本文結(jié)合時(shí)延神經(jīng)網(wǎng)絡(luò)和小波分析概念提出一種新的小波神經(jīng)網(wǎng)絡(luò)摸型自適應(yīng)時(shí)延小波神經(jīng)網(wǎng)絡(luò)(ATDWNN:adaptive timedelay wavelet neural network).ATDWNN可以對(duì)同一類存在不同時(shí)延的多個(gè)信號(hào)用同一個(gè)超小波(superwavelet)進(jìn)行逼近。為了訓(xùn)練ATDWNN,本文提出一種基于時(shí)間機(jī)理的競(jìng)爭(zhēng)學(xué)習(xí)算法。實(shí)驗(yàn)表明,ATDWNN不僅可以成功地對(duì)同一類存在不同時(shí)延的多個(gè)信號(hào)采用同一個(gè)超小波進(jìn)行逼近,而且可以用來(lái)估計(jì)各樣本信號(hào)的時(shí)延。
  • Hornik K, Stinchcombe M, White H. Multilayer feedforward networks are universal approximar tors. Neural Networks, 1989, NN-2(2): 359-366.[2]Par J, Sandberg I W. Universal approximation using radial-based-function networks[J].Neural Computation.1991, 3:246-257[3]Zhang Q H, Benvenisete A. Wavelet networks. IEEE Trans. on Neural networks, 1992, NN-3(6): 889-989.[4]Zhang J, Walter G G, Miao Y B, Lee W N. Wavelet neural networks for function learning[J].IEEE Trans. on Signal Processing.1995, 43(6):1485-1496[5]Kreinovich V, Sirisaengtaksin V, Cabrea S. Wavelet neural networks are optimal approximators for functions of one variable. University of Texas at EL. Paso, Computer Science Department Technical Report, 1992, No. UTEP-cs-92-29.[6]Delyon B, Juditsky A, Benveniste B. Accuracy analysis for wavelet approximation. IEEE Trans. on Neural Networks, 1995, NN-6(2): 332-348.[7]Szu H H, Telfer B, Kadambe B. Neural network adaptive wavelets for signal representation and classification[J].Optical Engineering.1992, 31(9):1907-1916[8]Waibel A, Hanazawa T, Hinton G, Shikano K, Lana K. Phone recognition using time-delay neural networks. IEEE Trans On ASSP, 1989, ASSP-37(3): 328-339.
  • 加載中
計(jì)量
  • 文章訪問(wèn)數(shù):  2218
  • HTML全文瀏覽量:  134
  • PDF下載量:  381
  • 被引次數(shù): 0
出版歷程
  • 收稿日期:  1996-07-02
  • 修回日期:  1997-12-08
  • 刊出日期:  1998-09-19

目錄

    /

    返回文章
    返回