深亞微米槽柵PMOSFET幾何結構參數對抗熱載流子特性的影響
Influence of geometrical structure parameters on hot-carrier-effect in deep-submicron grooved gate PMOSFET
-
摘要: 基于流體動力學能量輸運模型,利用二維仿真軟件Medici對深亞微米槽柵PMOS器件的幾何結構參數,如:溝道長度、凹槽拐角、凹槽深度和漏源結深導致的負結深對器件抗熱載流子特性的影響進行了研究。并從器件內部物理機理上對研究結果進行了解釋。研究發(fā)現,在深亞微米和超深亞微米區(qū)域,槽柵器件能夠很好地抑制熱載流子效應,且隨著凹槽拐角、負結深的增大,器件的抗熱載流子能力增強。這主要是因為這些結構參數影響了電場在槽柵MOS器件的分布和拐角效應,從而影響了載流子的運動并使器件的熱載流子效應發(fā)生變化。Abstract: Based on the hydro-dynamics energy transport model, the influence of geometrical structure parameters on hot-carrier-effect immunity in deep-submicron grooved gate PMOSFET is studied and explained in terms of device interior physics mechanism. These investigated structure parameters include effective channel length, concave corner and negative junction depth induced by change of source/drain junction depth and groove depth respectively. The research results indicate that the hot-carrier-effect is depressed deeply for grooved gate PMOSFET even in deep and super-deep-sub-micron region, and with the increase of concave corner and negative junction depth, the hot-carrier-effect immunity becomes better. It is mainly because that the structure parameters influence the electric field distribution in device and corner effect and so do the transportation of carriers.
-
K. Hieda, Sub-half-micrometer concave MOSFET with double LDD structure, IEEE Trans. on Electron devices, 1992, 39(3), 671-676.[2]K. Natori, I. sasaki, F. Masuoka, An analysis of the concave MOSFET, IEEE Trans. on Electron devices, 1978, 25(4), 448-456.[3]L. Jeongho, B. G. Park, A Novel 0.1m MOSFET Structure with Inverted Sidewall and Recessed Channel, IEEE Electron Device Letters, 1996, 17(4), 157-159.[4]任紅霞,深亞微米槽柵CMOS器件特性研究,博士后研究工作報告,西安電子科技大學,1999年12月.[5]Technology Modeling Associates, Inc. Medici Two-Dimensional Device Simulation Program Version 2.3 Users Manual, Vol.1, Feb. 1997. -
計量
- 文章訪問數: 2377
- HTML全文瀏覽量: 162
- PDF下載量: 497
- 被引次數: 0