一级黄色片免费播放|中国黄色视频播放片|日本三级a|可以直接考播黄片影视免费一级毛片

高級搜索

留言板

尊敬的讀者、作者、審稿人, 關(guān)于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復(fù)。謝謝您的支持!

姓名
郵箱
手機(jī)號碼
標(biāo)題
留言內(nèi)容
驗(yàn)證碼

用連續(xù)回歸神經(jīng)網(wǎng)絡(luò)求解泛函極值問題

劉賀平 張?zhí)m玲 孫一康

劉賀平, 張?zhí)m玲, 孫一康. 用連續(xù)回歸神經(jīng)網(wǎng)絡(luò)求解泛函極值問題[J]. 電子與信息學(xué)報(bào), 2000, 22(5): 729-734.
引用本文: 劉賀平, 張?zhí)m玲, 孫一康. 用連續(xù)回歸神經(jīng)網(wǎng)絡(luò)求解泛函極值問題[J]. 電子與信息學(xué)報(bào), 2000, 22(5): 729-734.
Liu Heping, Zhang Lanling, Sun Yikang . A CONTINUOUS TIME RECURRENT NEURAL NETWORK BASED METHOD TO SOLVE FUNCTIONAL MINIMIZATION PROBLEM[J]. Journal of Electronics & Information Technology, 2000, 22(5): 729-734.
Citation: Liu Heping, Zhang Lanling, Sun Yikang . A CONTINUOUS TIME RECURRENT NEURAL NETWORK BASED METHOD TO SOLVE FUNCTIONAL MINIMIZATION PROBLEM[J]. Journal of Electronics & Information Technology, 2000, 22(5): 729-734.

用連續(xù)回歸神經(jīng)網(wǎng)絡(luò)求解泛函極值問題

A CONTINUOUS TIME RECURRENT NEURAL NETWORK BASED METHOD TO SOLVE FUNCTIONAL MINIMIZATION PROBLEM

  • 摘要: 針對信息科學(xué)和控制理論中經(jīng)常涉及的一類泛函極值問題,提出基于連續(xù)回歸神經(jīng)網(wǎng)絡(luò)的求解方法。推導(dǎo)了求解泛函的連續(xù)BPTT算法,進(jìn)而對該算法進(jìn)行改進(jìn),得出一種在線學(xué)習(xí)算法,為并行實(shí)現(xiàn)打下了基礎(chǔ).
  • 葉慶凱,鄭應(yīng)干編著.變分法及其應(yīng)用.國防工業(yè)出版社,1991.[2]Funahashi K,Nakamura Y.Approximation of dynamical systems by continuous time recurrent neural networks[J].Neural Network.1993,6:801-806[3]Rumelhart D E,Hinton G E,Williams R J.Learning internal representations by error propagation.in Parallel Distributed Processing.Rumelhart,D.E.,McClelland,J.L.Eds.,Cambridge,MA:M.I.T Press,1986. [4]Werbos P J.Backpropagation through time:What it does and how to do it,Proc.of IEEE,1990,78(10):1550-1560.[4]Pearlmutter B A.Learning state space trajectories in recurrent neural network,IEEE Proc.IJCNN,1989,2:365-372.[5]Sato M.A Learning algorithm to teach spatiotemporal patterns to recurrent neural networks[J].Biological Cybernetics.1990,62:259-263[6]Williams R J,Zipser D.A Learning algorithm for continually running fully recurrent neural networks.Neural Computation.1989,1(2):270-280.[7]Baldi P.Gradient learning algorithm overview:A general dynamical systems perspective.IEEE Trans.on Neural Networks.1995,6(1):182-195.
  • 加載中
計(jì)量
  • 文章訪問數(shù):  2353
  • HTML全文瀏覽量:  83
  • PDF下載量:  556
  • 被引次數(shù): 0
出版歷程
  • 收稿日期:  1998-11-30
  • 修回日期:  1999-06-21
  • 刊出日期:  2000-09-19

目錄

    /

    返回文章
    返回