三角基函數(shù)神經(jīng)網(wǎng)絡算法在數(shù)值積分中的應用研究
Numerical Integration Study Based on Triangle Basis Neural Network Algorithm
-
摘要: 該文提出了一種基于三角基函數(shù)神經(jīng)網(wǎng)絡算法求解數(shù)值積分的新方法,提出并證明了神經(jīng)網(wǎng)絡算法的收斂定理和數(shù)值積分的求解定理及推論。最后給出了數(shù)值積分算例,并與傳統(tǒng)計算方法作了比較分析.分析結(jié)果表明,該文提出的數(shù)值積分方法計算精度高,適應性強,而且不需要知道被積函數(shù),因此該數(shù)值積分算法在電子學等工程實際中有較大的應用價值。Abstract: A new appproach to solve numerical integration is developsed in this paper, based on the algorithm of neural networks with triangle basis functions. The convergence theorem of the neural networks algorithm and the theorem of numerical integration solution and its inferences are presented and proved. By the examples of numerical integration the comparison is carried out with tradional methods. The results show that the numerical integration approach has the characteristics such as high precision, strong adaptablity, and the intergration of unknown fountions can be solved. Therefore, the numerical integration approach values significantly in many engineering applications, such as electronics, etc.
-
Burden R L, Faires J D. Numerical Analysis(Seventh Edition)[M]. Brooks/Cole, Thomson Learning, Inc., 2001: 186-226.[2]王能超.數(shù)值分析簡明教程[M].北京:高等教育出版社,1997:66-96.[3]沈劍華.數(shù)值計算基礎[M].上海:同濟大學出版社,1999:73-109.[4]林成森.數(shù)值計算方法(上)[M].北京:科學出版社,1998:173-215.[5]Burden R L, Faires J D. Numerical Analysis(Seventh Edition)[M]. Brooks/Cole, Thomson Learning, Inc., 2001: 206, 772.Burden R L, Faires J D. Numerical Analysis(Seventh Edition)[M]. Brooks/Cole, Thomson Learning, Inc., 2001: 212.Burden R L, Faires J D. Numerical Analysis(Seventh Edition)[M]. Brooks/Cole, Thomson Learning, Inc., 2001: 190.[6]Oppenheim A V,Willsky A S,Hamid Nawab W S著,劉樹棠譯.信號與系統(tǒng)(第二版)[M].西安:西安交通大學出版社,1998:71-72. -
計量
- 文章訪問數(shù): 2512
- HTML全文瀏覽量: 116
- PDF下載量: 955
- 被引次數(shù): 0