任意長(zhǎng)度離散Hartley變換的快速算法
FAST ALGORITHMS FOR DISCRETE HARTLEY TRANSFORM OF ARBITRARY LENGTH
-
摘要: 本文把長(zhǎng)為plq(p為奇數(shù),q為任意自然數(shù))的DHT轉(zhuǎn)化為Pl個(gè)長(zhǎng)為q的DHT的計(jì)算及其附加運(yùn)算,附加運(yùn)算只涉及P點(diǎn)cos-DFT和sin-DFT的計(jì)算;對(duì)長(zhǎng)度(P1l,1,Psls 2l (p1, , ps為奇素?cái)?shù))的DHT,用同樣的遞歸技術(shù)得到其快速算法,因而可計(jì)算任意長(zhǎng)度的DHT;文中還論證了計(jì)算長(zhǎng)為N的DHT所需的乘法和加法運(yùn)算量不超過(guò)O(Nlog2N)。當(dāng)長(zhǎng)度為N=pl時(shí),本文算法的乘法量比其他已知算法更少。
-
關(guān)鍵詞:
- 信號(hào)處理; Hartley變換; 快速算法
Abstract: DHT of length plq (p is odd. q is arbitrary) is turned into p-DHT's of length q and some additional operations while the additional operations only invol ves the computation of cos-DFT and sin-DFT with length p. If the length of a DHT is p1l1psls2l)(p1,, ps are odd primes), a fast algorithm is obtained by the similar recursive technique. Therefore, the algorithm can compute DHT of arbitrary length. The paper also proves that operations for computing DHT of length N by the algorithm are no more than O(Nlog2N). When the length is N=pl, operations of the algorithm are less than that of other known algorithms. -
R. N. Bracewell, IEEE Trans. on ASSP, ASSP-38 (1990) 12, 2174-2176.[2]王中德, 快速w變渙--算法與程序,中國(guó)科學(xué)(A輯),1988年,第5期,第549-560頁(yè).[3]S. C. Pei, J. L. Wu, Electron. Lett., 22 (1986) 1, 26-27.[4]R. N. Braceweil.[J].Electron. Lett..1987,23:10-[5]H. V. Sorensen et al., IEEE Trans. on ASSP, ASSP-33 (1985) 10, 1231-1238.[6]茅一民, 電子科學(xué)學(xué)刊, 12(1990)6,584-592.[7]H. J.努斯鮑默, 快速傅里葉變換和卷積算法,上??萍嘉墨I(xiàn)版,上海,1984年.[8]曾永紅,電子學(xué)報(bào),19(1991)5,87-95. -
計(jì)量
- 文章訪問(wèn)數(shù): 2469
- HTML全文瀏覽量: 123
- PDF下載量: 742
- 被引次數(shù): 0