基于二分圖的乘積碼迭代譯碼算法
Iterative Decoding Algorithm for Product Codes Based on Bipartite Graphs
-
摘要: 該文給出了由漢明分量乘積碼構(gòu)造廣義低密度(GLD)碼的一般方法。基于所得稀疏矩陣的二分圖,并結(jié)合分組碼與低密度校驗(yàn)(LDPC)碼的譯碼算法,設(shè)計(jì)出一種新穎的可用于乘積碼迭代譯碼的Chase-MP算法。由于所得二分圖中不含有長度為4和6的小環(huán),因而大大減少圖上迭代時(shí)外信息之間的相關(guān)性,進(jìn)而提高譯碼性能。對加性高斯白噪聲(AWGN)及瑞利(Rayleigh)衰落信道下,漢明分量 (63,57,3)2 乘積碼的模擬仿真顯示,該算法能夠獲得很好的譯碼性能。與傳統(tǒng)的串行迭代Chase-2算法相比,Chase-MP算法適合用于全并行譯碼處理,便于硬件實(shí)現(xiàn),而且譯碼性能優(yōu)于串行迭代Chase-2算法。
-
關(guān)鍵詞:
- 乘積碼;GLD碼;LDPC碼;二分圖;Chase-MP算法
Abstract: This paper shows how to construct generalized low-density (GLD) codes from Hamming-component product codes. Combining the decoding algorithms for linear block and LDPC codes,a novel Chase-MP algorithm for decoding of product codes is proposed by using the bipartite graph of the constructed sparse matrix. Since there are no cycles of length 4 or 6 in the graph, dependence among extrinsic information is greatly reduced during iterations and decoding performance is also improved. Experimental simulations for the (63,57,3)2 product code based on Hamming-component codes in terms of Bit Error Rate (BER) on the Additive White Gaussian Noise (AWGN) and Rayleigh fading channels show that our algorithm has remarkable coding gains. In comparison with the serially iterative Chase-2 algorithm, the Chase-MP algorithm is more convenient for fully parallelizable decoding and can achieve better performance. -
計(jì)量
- 文章訪問數(shù): 2379
- HTML全文瀏覽量: 92
- PDF下載量: 1114
- 被引次數(shù): 0