利用小波和分形理論進(jìn)行水下回波的特征提取
Feature extraction of underwater echoes using wavelet and fractal theories
-
摘要: 該文首先分析了五類湖底回波的不同尺度下小波子空間的能量特征和分形維特征;然后將這些特征矢量作為分類的特征,并根據(jù)特征本身的離散程度對其進(jìn)行加權(quán);最后采用最小距離分類器對其進(jìn)行分類,取得了 96.11%的分類正確率。
-
關(guān)鍵詞:
- 小波變換; 分形; 特征提取
Abstract: Firstly, the energy distribution in different wavelet scale space and the fractal dimension of underwater sonar echoes are discussed. Then, these feature vectors are utilized to classify the real echoes, and weight these features according to their own degree of dispersion. Finally, a minimum distance classifier is used in the classification procedure, and experimental results demonstrate the efficiency of the method. -
王正垠,馬遠(yuǎn)良,D.Vray,等,湖底回波信號的解卷積處理[J],信號處理,1997,13(4),335-340.[2]趙建平,黃建國,謝一清,等,用小波變換進(jìn)行水下回波邊緣特征提取與分類識別[J],聲學(xué)學(xué)報(bào),1998,23(1),31-38.[3]張靜遠(yuǎn),張冰,蔣興舟,基于小波變換的特征提取方法研究[J],信號處理,2000,16(2),156-162.[4]丁慶海,莊志洪,祝龍石,等,混沌、分形和小波理論在被動(dòng)聲信號特征提取中的應(yīng)用[J],聲學(xué)學(xué)報(bào),1999,24(2),197-203.[5]余秋星,基于混沌與分形的信號檢測[M],[碩士論文],西安,西北工業(yè)大學(xué),2001.[6]S.Haykin,XB Li,Detection of Signals in Chaos,Proc.IEEE[J], 1995,83(1),94-122.[7]吳高洪,章毓晉,林行剛,利用特征加權(quán)對基于小波變換的紋理分類[J],模式識別與人工智能,1999,12(3),262-267. -
計(jì)量
- 文章訪問數(shù): 2039
- HTML全文瀏覽量: 117
- PDF下載量: 811
- 被引次數(shù): 0