論文元數(shù)據(jù)搜索,找到相關(guān)信息共 17 條:
2000, 22(1): 68-72.
刊出日期:2000-01-19
關(guān)鍵詞:
移位寄存器序列; de Bruijn序列; 循環(huán)圈
本文給出一種de Bruijn序列的升元算法。該算法每步運算可生成一列元素而不是一個元素,因而減少了運算次數(shù),加快了生成速度。
1993, 15(2): 204-207.
刊出日期:1993-03-19
關(guān)鍵詞:
De Druijn序列; 齊次復(fù)雜度; 矩陣; 矩陣的秩
De Bruijn序列是一類最重要的非線性移位寄存器序列。本文定義并研究了n級De Bruijn序列的k次齊次復(fù)雜度Ck(s),給出了Ck(s)的一個上界。k=1及k=2時,Ck(s)分別為人們所熟知的線性復(fù)雜度及二次齊次復(fù)雜度。
1995, 17(6): 618-622.
刊出日期:1995-11-19
關(guān)鍵詞:
移位寄存器; De Bruijn序列; 循環(huán)圈
De Bruijn序列是一類最重要的非線性移位寄存器序列。本文通過并置所有循環(huán)圈的周期約化,提出了一個新的生成k元de Bruijn序列的算法。該算法每步運算可生成一列元素而不是一個元素,因此減少了運算次數(shù),加快了生成速度。
2015, 37(8): 1994-1999.
doi: 10.11999/JEIT141635
刊出日期:2015-08-19
該文分析了He等人(2014)提出的無證書簽名方案和Ming等人(2014)提出的無證書聚合簽名方案的安全性,指出Ming方案存在密鑰生成中心(KGC)被動攻擊,He方案存在KGC被動攻擊和KGC主動攻擊。該文描述了KGC對兩個方案的攻擊過程,分析了兩個方案存在KGC攻擊的原因,最后對Ming方案提出了兩類改進。改進方案不僅克服了原方案的安全性問題,同時也保持了原方案聚合簽名長度固定的優(yōu)勢。
2006, 28(8): 1415-1417.
刊出日期:2006-08-19
關(guān)鍵詞:
數(shù)字簽名;代理簽名;多重代理;多重簽名
為克服多重代理簽名方案中無法確認誰是真正簽名者的弱點,Sun于1999年提出了不可否認的代理簽名方案。2000年Hwang等人指出Sun的方案不安全,并對Sun的方案進行了改進,2004年 Tzeng, Tan, Yang各自對Hwang等人的方案進行了安全性分析,指出Hwang方案容易受到內(nèi)部偽造攻擊。該文通過讓原始簽名組與代理簽名組互動來實現(xiàn)秘密共享和密鑰分配的方法,設(shè)計了一種新的安全的多重代理、多重簽名方案,它能夠滿足不可否認性和不可偽造性的要求。
2015, 37(8): 1971-1977.
doi: 10.11999/JEIT141604
刊出日期:2015-08-19
為了分析ZUC序列密碼算法在相關(guān)性能量分析攻擊方面的免疫能力,該文進行了相關(guān)研究。為了提高攻擊的針對性,該文提出了攻擊方案的快速評估方法,并據(jù)此給出了ZUC相關(guān)性能量分析攻擊方案。最后基于ASIC開發(fā)環(huán)境構(gòu)建仿真驗證平臺,對攻擊方案進行了驗證。實驗結(jié)果表明該方案可成功恢復(fù)48 bit密鑰,說明ZUC并不具備相關(guān)性能量分析攻擊的免疫力,同時也證實了攻擊方案快速評估方法的有效性。相比Tang Ming等采用隨機初始向量進行差分能量攻擊,初始向量樣本數(shù)達到5000時才能觀察到明顯的差分功耗尖峰,該文的攻擊方案只需256個初始向量,且攻擊效果更為顯著。
2011, 33(7): 1639-1643.
doi: 10.3724/SP.J.1146.2010.01212
刊出日期:2011-07-19
針對粒子濾波(Particle Filter, PF)存在的粒子退化和貧化問題,該文提出一種基于差分演化(Differential Evolution, DE)的PF算法。首先,為了充分利用最新的觀測信息,采用無跡卡爾曼濾波(Unscented Kalman Filter, UKF)來產(chǎn)生重要性分布,對重要性分布產(chǎn)生的采樣粒子不再做傳統(tǒng)重采樣操作,而是直接把采樣粒子當(dāng)作DE中的種群樣本,粒子權(quán)重作為樣本的適應(yīng)函數(shù),對粒子做差分變異、交叉、選擇等迭代優(yōu)化,最后得到最優(yōu)的粒子點集。試驗結(jié)果表明,該算法有效緩解了傳統(tǒng)PF算法中的粒子退化和貧化,提高了粒子的利用率,具有較好的估計精度。
2007, 29(12): 2848-2852.
doi: 10.3724/SP.J.1146.2006.00516
刊出日期:2007-12-19
關(guān)鍵詞:
雷達;長拖尾分布;衰減指數(shù)模型;M估計;K分布雜波
實際條件下,在對基于衰減指數(shù)(DE)和模型的雷達目標(biāo)散射中心參數(shù)估計和特征提取時,其噪聲背景往往是非高斯的,分布密度函數(shù)表現(xiàn)出長拖尾性質(zhì)。利用基于高斯假設(shè)條件下的估計方法進行參數(shù)估計時,往往不能得到較好的結(jié)果。針對這種情況,該文利用M估計方法來實現(xiàn)對長拖尾雜波下DE模型參數(shù)的穩(wěn)健估計。首先分析了基于PRONY模型的M估計實現(xiàn)方法存在的不足,其次提出了兩種較為有效的DE模型散射中心參數(shù)M估計的實現(xiàn)方法,并對這兩種方法進行了分析和比較。仿真實驗結(jié)果表明,在一類長拖尾K分布雜波條件下,與ESPRIT方法以及擴展PRONY估計方法相比,該文所提的兩種方法均能得到較好的估計結(jié)果。
2008, 30(7): 1640-1643.
doi: 10.3724/SP.J.1146.2006.02002
刊出日期:2008-07-19
關(guān)鍵詞:
準(zhǔn)循環(huán)LDPC碼; 差分進化; Girth分布; 最小距離
在準(zhǔn)循環(huán)LDPC碼的構(gòu)造中,校驗矩陣擁有盡可能好的girth分布對于改善碼的性能有著重要的意義。該文提出了構(gòu)造準(zhǔn)循環(huán)LDPC碼的GirthOpt-DE算法,優(yōu)化設(shè)計以獲得具有好girth分布的移位參數(shù)矩陣為目標(biāo)。仿真結(jié)果表明,該文方法得到的準(zhǔn)循環(huán)LDPC碼在BER性能和最小距離上均要優(yōu)于固定生成函數(shù)的準(zhǔn)循環(huán)LDPC碼,Arrary碼和Tanner碼,并且使用上更為靈活,可以指定碼長,碼率及盡可能好的girth分布。
2016, 38(11): 2715-2723.
doi: 10.11999/JEIT160052
刊出日期:2016-11-19
高光譜遙感影像由于其巨大的波段數(shù)直接導(dǎo)致信息的高冗余和數(shù)據(jù)處理的復(fù)雜,這不僅帶來龐大的計算量,而且會損害分類精度。因此,在對高光譜影像進行處理、分析之前進行降維變得非常必要。神經(jīng)網(wǎng)絡(luò)敏感性分析可以用于對模型的簡化降維,該文將該方法運用于高光譜遙感影像降維中,通過子空間劃分弱化波段之間的相關(guān)性,利用差分進化算法(DE)優(yōu)化神經(jīng)網(wǎng)絡(luò)結(jié)構(gòu),采用Ruck敏感性分析方法剔除掉對分類貢獻較小的波段,從而實現(xiàn)降維。最后,采用AVIRIS影像進行實驗,所提算法相比其他相近的降維與分類方法能獲得更高的分類精度,達到85.83%,比其他相近方法中最優(yōu)方法高出0.31%。
- 首頁
- 上一頁
- 1
- 2
- 下一頁
- 末頁
- 共:2頁