論文元數(shù)據(jù)搜索,找到相關(guān)信息共 2 條:
2015, 37(4): 881-886.
doi: 10.11999/JEIT140831
刊出日期:2015-04-19
目前基于標(biāo)簽的Grbner基算法大多是Buchberger型的,涉及矩陣型算法的文獻(xiàn)往往是為了進(jìn)行復(fù)雜度分析,而不考慮實(shí)際的效率。該文從實(shí)際應(yīng)用出發(fā),給出矩陣型Gao-Volny-Wang(GVW)算法的一個(gè)實(shí)例,提出算法層次的優(yōu)化設(shè)計(jì)方法。同時(shí),該文還給出一個(gè)高效的約化準(zhǔn)則。通過實(shí)驗(yàn),該文比較了算法可用的各項(xiàng)準(zhǔn)則及策略。實(shí)驗(yàn)結(jié)果表明,該文的矩陣型GVW實(shí)例在準(zhǔn)則和策略的選取上是最優(yōu)的。并且,矩陣型GVW在某些多項(xiàng)式系統(tǒng)(例如,Cyclic系列和Katsura系列多項(xiàng)式系統(tǒng))下比Buchberger型GVW要快2~6倍。
2025, 47(3): 758-768.
doi: 10.11999/JEIT240796
刊出日期:2025-03-01
在車載網(wǎng)絡(luò)(VANETs)中,聯(lián)邦學(xué)習(xí)(FL)通過協(xié)同訓(xùn)練機(jī)器學(xué)習(xí)模型,實(shí)現(xiàn)了車輛間的數(shù)據(jù)隱私保護(hù),并提高了整體模型的性能。然而,F(xiàn)L在VANETs中的應(yīng)用仍面臨諸多挑戰(zhàn),如模型泄露風(fēng)險(xiǎn)、訓(xùn)練結(jié)果驗(yàn)證困難以及高計(jì)算和通信成本等問題。針對這些問題,該文提出一種面向聯(lián)邦學(xué)習(xí)的可驗(yàn)證隱私保護(hù)批量聚合方案。首先,該方案基于Boneh-Lynn-Shacham (BLS)動態(tài)短群聚合簽名技術(shù),保護(hù)了客戶端與路邊單元(RSU)交互過程中的數(shù)據(jù)完整性,確保全局梯度模型更新與共享過程的不可篡改性。當(dāng)出現(xiàn)異常結(jié)果時(shí),方案利用群簽名的特性實(shí)現(xiàn)車輛的可追溯性。其次,結(jié)合改進(jìn)的Cheon-Kim-Kim-Song (CKKS)線性同態(tài)哈希算法,對梯度聚合結(jié)果進(jìn)行驗(yàn)證,確保在聯(lián)邦學(xué)習(xí)的聚合過程中保持客戶端梯度的機(jī)密性,并驗(yàn)證聚合結(jié)果的準(zhǔn)確性,防止服務(wù)器篡改數(shù)據(jù)導(dǎo)致模型訓(xùn)練無效的問題。此外,該方案還支持車輛在部分掉線的情況下繼續(xù)更新模型,保障系統(tǒng)的穩(wěn)定性。實(shí)驗(yàn)結(jié)果表明,與現(xiàn)有方案相比,該方案在提升數(shù)據(jù)隱私安全性和結(jié)果的可驗(yàn)證性的同時(shí),保證了較高效率。