論文元數(shù)據(jù)搜索,找到相關(guān)信息共 2 條:
2017, 39(3): 743-748.
doi: 10.11999/JEIT160300
刊出日期:2017-03-19
微支付交易具有交易量極大且單次交易額極小的特點(diǎn),使得復(fù)雜的認(rèn)證協(xié)議不適用于微支付。Micali等人(2002)提出的基于概率選擇微支付方案,把微支付聚合成宏支付,大幅提高了微支付的效率。Liu-Yan在(2013)提出了保證所有參與者的數(shù)據(jù)融入概率選擇結(jié)果的生成, 而且使得所有參與者可以驗(yàn)證結(jié)果的公平性。然而,Liu-Yan方案中銀行可能獲得額外利益,從而破壞了協(xié)議的公平性。該文首先分析了Liu-Yan方案的安全威脅,并且以1個(gè)用戶-1個(gè)商家的模型代替Liu-Yan方案中大量用戶-1個(gè)商家的模型,以數(shù)據(jù)承諾技術(shù)為基礎(chǔ)保障結(jié)果的公平性與可驗(yàn)證性。
2022, 44(10): 3343-3352.
doi: 10.11999/JEIT220380
刊出日期:2022-10-19
基于深度卷積神經(jīng)網(wǎng)絡(luò)的圖像超分辨率重建算法通常假設(shè)低分辨率圖像的降質(zhì)是固定且已知的,如雙3次下采樣等,因此難以處理降質(zhì)(如模糊核及噪聲水平)未知的圖像。針對(duì)此問(wèn)題,該文提出聯(lián)合估計(jì)模糊核、噪聲水平和高分辨率圖像,設(shè)計(jì)了一種基于迭代交替優(yōu)化的圖像盲超分辨率重建網(wǎng)絡(luò)。在所提網(wǎng)絡(luò)中,圖像重建器以估計(jì)的模糊核和噪聲水平作為先驗(yàn)信息,由低分辨率圖像重建出高分辨率圖像;同時(shí),綜合低分辨率圖像和估計(jì)的高分辨率圖像,模糊核及噪聲水平估計(jì)器分別實(shí)現(xiàn)模糊核和噪聲水平的估計(jì)。進(jìn)一步地,該文提出對(duì)模糊核/噪聲水平估計(jì)器及圖像重建器進(jìn)行迭代交替的端對(duì)端優(yōu)化,以提高它們的兼容性并使其相互促進(jìn)。實(shí)驗(yàn)結(jié)果表明,與IKC, DASR, MANet, DAN等現(xiàn)有算法相比,提出方法在常用公開(kāi)測(cè)試集(Set5, Set14, B100, Urban100)及真實(shí)場(chǎng)景圖像上都取得了更優(yōu)的性能,能夠更好地對(duì)降質(zhì)未知的圖像進(jìn)行重建;同時(shí),提出方法在參數(shù)量或處理效率上也有一定的優(yōu)勢(shì)。