基于頻域稀疏壓縮感知的星載SAR稀疏重航過(guò)3維成像
doi: 10.11999/JEJT190638 cstr: 32379.14.JEJT190638
-
1.
電磁散射重點(diǎn)實(shí)驗(yàn)室 北京 100854
-
2.
中國(guó)空間技術(shù)研究院總體設(shè)計(jì)部 北京 100094
-
3.
中國(guó)科學(xué)院電子學(xué)研究所微波成像技術(shù)重點(diǎn)實(shí)驗(yàn)室 北京 100190
Sparse Flight 3-D Imaging of Spaceborne SAR Based on Frequency Domain Sparse Compressed Sensing
-
1.
Science and Technology on Electromagnetic Scattering Laboratory, Beijing 100854, China
-
2.
General Design Department, China Academy of Space Technology, Beijing 100094, China
-
3.
Key Laboratory of Science and Technology on Microwave Imaging, Institute of Electronics, Chinese Academy of Sciences, Beijing 100190, China
-
摘要:
星載合成孔徑雷達(dá)(SAR)稀疏重航過(guò)3維成像技術(shù)通過(guò)交軌向的多次飛行觀測(cè),獲得觀測(cè)場(chǎng)景的第3維分辨。該文給出了單顆衛(wèi)星SAR稀疏重航過(guò)軌道分布,為有效縮短重訪時(shí)間,同時(shí)給出了編隊(duì)雙星SAR軌道分布,對(duì)應(yīng)的交軌向等效孔徑長(zhǎng)度為20 km。提出了一種基于干涉處理和頻域壓縮感知(CS)的稀疏3維成像方法,利用稀疏重航過(guò)中的部分回波形成參考3維復(fù)圖像,對(duì)待重建SAR 3維圖像信號(hào)進(jìn)行干涉處理,使信號(hào)在頻域具備稀疏性。在大軌道分布范圍下,建立頻域距離向-交軌向線性測(cè)量矩陣,利用CS理論聯(lián)合求解稀疏表征下的圖像頻譜,避免交軌向和距離向的回波信號(hào)耦合。將求解所得頻譜逆變換至空間域,可得到觀測(cè)場(chǎng)景的3維圖像重建結(jié)果。仿真結(jié)果表明,該文方法在稀疏采樣率74.4%條件下,仍可獲得與滿采樣成像性能相當(dāng)?shù)慕Y(jié)果,驗(yàn)證了干涉處理頻域稀疏方法在星載SAR 3維成像中的有效性。
-
關(guān)鍵詞:
- 星載SAR /
- 稀疏重航過(guò) /
- 編隊(duì)衛(wèi)星 /
- 壓縮感知 /
- 干涉處理
Abstract:The space-borne Synthetic Aperture Radar (SAR) sparse flight three-dimensional (3-D) imaging technology through the multiple observations in cross-track direction obtains the 3-D spatial distribution of the observed scene. In this paper, the orbit distribution of single satellite SAR sparse flight is given. In order to shorten effectively the satellite revisit time, the formation of double star SAR orbit distribution is given. The corresponding cross-track equivalent aperture length is 20 km. A sparse 3-D imaging method based on interferometry and compressed sensing is proposed. The referential complex image is formed by using part of the echoes of the sparse flight, and the SAR 3-D image signals which are to be reconstruct are processed by interferometry. This method makes the signal sparse in the frequency domain. Under the large orbit distribution range, the frequency domain range direction and cross-track linear measurement matrix is established, which is beneficial to the Compressed Sensing(CS) theory to solve jointly the image frequency spectrum under sparse representation, and avoid the echoes coupling between the range and cross-track direction. Inversely transforming the resulting spectrum into the spatial domain, the reconstruction result can be obtained. Simulation results show that under the condition of sparse sampling rate of 74.4%, the imaging performance of the proposed method is still comparable to that of full sampling.
-
Key words:
- Space-borne SAR /
- Sparse flight /
- Satellite formation flying /
- Compressed Sensing (CS) /
- Interferometry
-
表 1 衛(wèi)星軌道漂移情況
時(shí)間(d) 0.285479 6.285773 12.28588 18.2858 24.28553 30.28536 36.28558 42.28562 經(jīng)度漂移(km) 0 0.123000 0.180000 0.168000 0.087000 0.043000 0.141000 0.173000 距離漂移(km) 0 13.692300 20.037520 18.701680 9.684800 4.786740 15.696060 19.258280 時(shí)間(d) 48.285470 54.285150 60.285210 66.285380 72.285390 78.285250 84.284980 90.284810 經(jīng)度漂移(km) 0.138000 0.039000 0.079000 0.159000 0.183000 0.152000 0.071000 0.029000 距離漂移(km) 15.362100 4.341462 8.794244 17.699810 20.371480 16.920570 7.903688 3.228267 時(shí)間(d) 96.285010 102.285100 108.285000 114.284900 120.284600 126.284500 132.284700 經(jīng)度漂移(km) 0.119000 0.164000 0.167000 0.128000 0.049000 0.017000 0.117000 距離漂移(km) 13.247030 18.256410 18.590360 14.248900 5.454658 1.892432 13.02439 下載: 導(dǎo)出CSV
表 2 星載重航過(guò)SAR側(cè)視3維成像仿真參數(shù)
參數(shù) 數(shù)值 參數(shù) 數(shù)值 工作波長(zhǎng)$\lambda $ 0.03 m 單星軌道最小間隔 111.3 m 發(fā)射信號(hào)帶寬${B_s}$ 300 MHz 編隊(duì)雙星間隔 222.6 m 參考平臺(tái)高度$H$ 550 km 交軌采樣最小間隔 111.3 m 入射角 45° 交軌等效孔徑長(zhǎng)度 20 km 方位分辨率 1 m 重復(fù)軌道次數(shù) 23 機(jī)載平臺(tái)速度 7 km/s 下載: 導(dǎo)出CSV
表 3 圖像重建結(jié)果誤差分析
觀測(cè)方式 算法 評(píng)價(jià)指標(biāo) 圖像熵 相關(guān)系數(shù) 均方根誤差(m) 180次滿采樣重航過(guò) 3維BP成像 0.4532 單顆衛(wèi)星23次稀疏重航過(guò) 3維BP成像 0.7214 0.6566 0.0604 編隊(duì)雙星23次稀疏重航過(guò) 3維BP成像 0.6980 0.7903 0.0453 單顆衛(wèi)星23次稀疏重航過(guò) 空間域CS成像 0.0095 0.5902 0.0432 編隊(duì)雙星23次稀疏重航過(guò) 空間域CS成像 0.0093 0.6094 0.0414 單顆衛(wèi)星23次稀疏重航過(guò) 頻域CS成像 0.0503 0.7843 0.0405 編隊(duì)衛(wèi)星23次稀疏重航過(guò) 頻域CS成像 0.0453 0.8280 0.0296 下載: 導(dǎo)出CSV
-
GIRET R, JEULAND H, and ENERT P. A study of a 3D-SAR concept for a millimeter wave imaging radar onboard an UAV[C]. The 1st European Radar Conference, Amsterdam, The Netherland, 2004: 201–204. REIGBER A, MOREIRA A, and PAPATHANASSIOU K P. First demonstration of airborne SAR tomography using multibaseline L-band data[C]. IEEE 1999 International Geoscience and Remote Sensing Symposium, Hamburg, Germany, 1999: 44–46. doi: 10.1109/IGARSS.1999.773395. CANDES E J, WAKIN M B. An introduction to compressive sampling[J]. IEEE Signal Processing Magazine, 2008, 25(2): 21–30. doi: 10.1109/MSP.2007.914731 CANDèS E J. Compressive sampling[C]. The International Congress of Mathematicians, Madrid, Spain, 2006: 1–20. DONOHO D L. Compressed sensing[J]. IEEE Transactions on Information Theory, 2006, 52(4): 1289–1306. doi: 10.1109/TIT.2006.871582 徐華平, 周蔭清, 李春升. 分布式星載干涉SAR中空間基線的分析和設(shè)計(jì)[J]. 電子與信息學(xué)報(bào), 2003, 25(9): 1194–1199.XU Huaping, ZHOU Yinqing, and LI Chunsheng. Baseline analysis and design for distributed spaceborne inteferometric SAR[J]. Journal of Electronics &Information Technology, 2003, 25(9): 1194–1199. ZHU Xiaoxiang and BAMLER R. Very high resolution spaceborne SAR tomography in urban environment[J]. IEEE Transactions on Geoscience and Remote Sensing, 2010, 48(12): 4296–4308. doi: 10.1109/TGRS.2010.2050487 ZHU Xiaoxiang and BAMLER R. Sparse tomographic SAR reconstruction from mixed TerraSAR-X/TanDEM-X data stacks[C]. 2012 IEEE International Geoscience and Remote Sensing Symposium, Munich, Germany, 2012: 7468–7471. doi: 10.1109/IGARSS.2012.6351905. ZHU Xiaoxiang and BAMLER R. Let’s do the time warp: Multicomponent nonlinear motion estimation in differential SAR tomography[J]. IEEE Geoscience and Remote Sensing Letters, 2011, 8(4): 735–739. doi: 10.1109/LGRS.2010.2103298 GE Nan and ZHU Xiaoxiang. Bistatic-like differential SAR tomography[J]. IEEE Transactions on Geoscience and Remote Sensing, 2019, 57(8): 5883–5893. doi: 10.1109/TGRS.2019.2902814 張清娟, 李道京, 李烈辰. 連續(xù)場(chǎng)景的稀疏陣列SAR側(cè)視三維成像研究[J]. 電子與信息學(xué)報(bào), 2013, 35(5): 1097–1102. doi: 10.3724/SP.J.1146.2012.01136ZHANG Qingjuan, LI Daojing, and LI Liechen. Research on continuous scene side-looking 3D imaging based on sparse array[J]. Journal of Electronics &Information Technology, 2013, 35(5): 1097–1102. doi: 10.3724/SP.J.1146.2012.01136 李烈辰, 李道京. 基于壓縮感知的連續(xù)場(chǎng)景稀疏陣列SAR三維成像[J]. 電子與信息學(xué)報(bào), 2014, 36(9): 2166–2172. doi: 10.3724/SP.J.1146.2013.01645LI Liechen and LI Daojing. Sparse array SAR 3D imaging for continuous scene based on compressed sensing[J]. Journal of Electronics &Information Technology, 2014, 36(9): 2166–2172. doi: 10.3724/SP.J.1146.2013.01645 TIAN He and LI Daojing. Sparse flight array SAR downward-looking 3-D imaging based on compressed sensing[J]. IEEE Geoscience and Remote Sensing Letters, 2016, 13(10): 1395–1399. doi: 10.1109/LGRS.2016.2560238 田鶴, 李道京. 稀疏重航過(guò)陣列SAR運(yùn)動(dòng)誤差補(bǔ)償和三維成像方法[J]. 雷達(dá)學(xué)報(bào), 2018, 7(6): 717–729. doi: 10.12000/JR18101TIAN He and LI Daojing. Motion compensation and 3-D imaging algorithm in sparse flight based airborne array SAR[J]. Journal of Radars, 2018, 7(6): 717–729. doi: 10.12000/JR18101 尹建鳳, 張慶君, 劉杰, 等. 國(guó)外編隊(duì)飛行干涉SAR衛(wèi)星系統(tǒng)發(fā)展綜述[J]. 航天器工程, 2018, 27(1): 116–122. doi: 10.3969/j.issn.1673-8748.2018.01.016YIN Jianfeng, ZHANG Qingjun, LIU Jie, et al. A review on development of formation flying interferometric SAR satellite system[J]. Spacecraft Engineering, 2018, 27(1): 116–122. doi: 10.3969/j.issn.1673-8748.2018.01.016 PETERSON E H, FOTOPOULOS G, and ZEE R E. A feasibility assessment for low-Cost InSAR formation-flying microsatellites[J]. IEEE Transactions on Geoscience and Remote Sensing, 2009, 47(8): 2847–2858. doi: 10.1109/TGRS.2009.2017521 ZINK M, BARTUSCH M, and MILLER D. TanDEM-X mission status[C]. 2011 IEEE International Geoscience and Remote Sensing Symposium, Vancouver, Canada, 2011: 2290–2293. doi: 10.1109/IGARSS.2011.6049666. TRIDON D B, BACHMANN M, B?ER J, et al. TanDEM-X going for the DEM: Acquisition, performance, and further activities[C]. The 5th IEEE Asia-Pacific Conference on Synthetic Aperture Radar (APSAR), Singapore, 2015: 163–168. doi: 10.1109/APSAR.2015.7306180. WANG Puzhong and SHI Changsheng. Antenna Principle[M]. Beijing: Tsinghua University Press, 1993. -