一级黄色片免费播放|中国黄色视频播放片|日本三级a|可以直接考播黄片影视免费一级毛片

高級搜索

留言板

尊敬的讀者、作者、審稿人, 關(guān)于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復(fù)。謝謝您的支持!

姓名
郵箱
手機(jī)號碼
標(biāo)題
留言內(nèi)容
驗證碼

AI賦能的通感算一體化關(guān)鍵技術(shù)研究綜述

朱政宇 殷夢琳 姚信威 徐勇軍 孫鋼燦 徐明亮

朱政宇, 殷夢琳, 姚信威, 徐勇軍, 孫鋼燦, 徐明亮. AI賦能的通感算一體化關(guān)鍵技術(shù)研究綜述[J]. 電子與信息學(xué)報. doi: 10.11999/JEIT250242
引用本文: 朱政宇, 殷夢琳, 姚信威, 徐勇軍, 孫鋼燦, 徐明亮. AI賦能的通感算一體化關(guān)鍵技術(shù)研究綜述[J]. 電子與信息學(xué)報. doi: 10.11999/JEIT250242
ZHU Zhengyu, YIN Menglin, YAO Xinwei, XU Yongjun, SUN Gangcan, XU Mingliang. Overview of the Research on Key Technologies for AI-powered Integrated Sensing, Communication and Computing[J]. Journal of Electronics & Information Technology. doi: 10.11999/JEIT250242
Citation: ZHU Zhengyu, YIN Menglin, YAO Xinwei, XU Yongjun, SUN Gangcan, XU Mingliang. Overview of the Research on Key Technologies for AI-powered Integrated Sensing, Communication and Computing[J]. Journal of Electronics & Information Technology. doi: 10.11999/JEIT250242

AI賦能的通感算一體化關(guān)鍵技術(shù)研究綜述

doi: 10.11999/JEIT250242 cstr: 32379.14.JEIT250242
詳細(xì)信息
    作者簡介:

    朱政宇:男,副教授,研究方向為無線通信和信號處理、5G、物聯(lián)網(wǎng)、機(jī)器學(xué)習(xí)、大規(guī)模MIMO、毫米波通信、無人機(jī)通信、物理層安全、無線協(xié)作網(wǎng)絡(luò)、凸優(yōu)化技術(shù)和攜能傳輸?shù)?/p>

    殷夢琳:女,碩士生,研究方向為通感算一體化技術(shù)、深度學(xué)習(xí)等

    姚信威:男,教授,研究方向為群智感知與協(xié)同、智聯(lián)網(wǎng)、智能機(jī)器人等

    徐勇軍:男,教授,研究方向為反向散射通信、UAV通信、異構(gòu)無線網(wǎng)絡(luò)等

    孫鋼燦:男,教授,研究方向為深度學(xué)習(xí)、機(jī)器學(xué)習(xí)、無線通信、物理層安全技術(shù)等

    徐明亮:男,教授,研究方向為人工智能、大數(shù)據(jù)、機(jī)器人、工業(yè)軟件等

    通訊作者:

    孫鋼燦 iegcsun@zzu.edu.cn

  • 中圖分類號: TN915.0

Overview of the Research on Key Technologies for AI-powered Integrated Sensing, Communication and Computing

  • 摘要: 通感算一體化技術(shù)與人工智能算法相結(jié)合已成為一個非常重要的領(lǐng)域,因其頻譜利用率高、硬件成本低等優(yōu)點,已經(jīng)成為第6代(6G)網(wǎng)絡(luò)中的關(guān)鍵技術(shù)之一。人工智能(AI)賦能的通感算一體化系統(tǒng)通過集成感知、通信、計算和人工智能功能,可在日益復(fù)雜和動態(tài)的環(huán)境中實現(xiàn)快速數(shù)據(jù)處理、實時資源優(yōu)化和智能決策,已經(jīng)廣泛應(yīng)用于智能車載網(wǎng)絡(luò),包括無人機(jī)和自動汽車,以及雷達(dá)應(yīng)用、定位和跟蹤、波束成形等領(lǐng)域。該文在引入人工智能算法來提高通感算一體化系統(tǒng)性能的基礎(chǔ)上,簡要介紹了人工智能和通感算一體化的特征與優(yōu)勢,重點討論了AI賦能的通感算一體化系統(tǒng)的智能網(wǎng)絡(luò)框架、應(yīng)用前景、性能指標(biāo)和關(guān)鍵技術(shù),并在最后對AI賦能的通感算一體化面臨的挑戰(zhàn)進(jìn)行了研究展望,未來的6G無線通信網(wǎng)絡(luò)將超越純粹的數(shù)據(jù)傳輸管道,成為一個集成傳感、通信、計算和智能的綜合平臺,以提供無處不在的人工智能服務(wù)。
  • 圖  1  6G驅(qū)動AI賦能通感算一體化系統(tǒng)

    圖  2  人工智能、機(jī)器學(xué)習(xí)、深度學(xué)習(xí)之間的關(guān)系

    圖  3  DRL原理圖

    圖  4  FL原理框架

    圖  5  AI賦能通感算一體化網(wǎng)絡(luò)架構(gòu)

    圖  6  AI賦能通感算一體化應(yīng)用場景

    表  1  5G與6G部分性能指標(biāo)對比

    性能指標(biāo) 5G 6G 提升效果
    峰值速率 10~20 Gbit/(s·Hz)(理論值) 100 Gbit/(s·Hz) ~1 Tbit/(s·Hz)(理論值) 10~100倍
    用戶體驗速率 0.1~1 Gbit/(s·Hz) 數(shù)十Gbit/(s·Hz) 10~100倍
    時延 1 ms 10~100 μs 10~100倍
    連接密度 106設(shè)備/km2 107~108設(shè)備/km2 10~100倍
    頻譜效率 約100 bit/(s·Hz) 150~300 bit/(s·Hz) 1.5~3倍
    覆蓋范圍 地面基站為主 空天地一體化覆蓋 全球無縫覆蓋
    下載: 導(dǎo)出CSV

    表  2  AI賦能通感算一體化系統(tǒng)與傳統(tǒng)正交頻分復(fù)用波形系統(tǒng)性能對比

    對比維度 AI賦能通感算一體化系統(tǒng) 傳統(tǒng)正交頻分復(fù)用波形系統(tǒng) 關(guān)鍵差異來源
    通信性能[18,19] AI優(yōu)化波束成形,誤碼率降低10%~30%
    頻譜效率提升
    高峰均功率比導(dǎo)致信號失真
    固定子載波分配效率受限
    AI動態(tài)優(yōu)化波形與資源分配
    感知精度[1921] MSE降低20%~50%
    支持多目標(biāo)跟蹤與語義提取
    快速傅里葉變換低信噪比誤差大
    單目標(biāo)檢測為主
    AI增強(qiáng)信號去噪能力
    計算效率[16,22] 邊緣智能降低30%~60%時延
    實時信道建模
    云端集中計算時延高
    多徑分離需迭代處理
    云邊端協(xié)同架構(gòu)優(yōu)化
    時空頻復(fù)雜度 LSTM波束預(yù)測控制時延
    動態(tài)頻譜共享
    凸優(yōu)化算法耗時長
    固定子載波分配
    AI動態(tài)資源調(diào)度技術(shù)
    能耗 AI輔助降低功耗 全子載波高功耗 智能功率優(yōu)化策略
    下載: 導(dǎo)出CSV

    表  3  AI賦能通感算一體化系統(tǒng)關(guān)鍵技術(shù)簡要匯總

    參考文獻(xiàn) 關(guān)鍵技術(shù) AI作用 性能指標(biāo) 訓(xùn)練模型 應(yīng)用場景
    [25] 波形設(shè)計 優(yōu)化波形生成、選擇、調(diào)整、匹配等,
    以適應(yīng)通信感知雙重需求,并降低復(fù)雜度
    保密率 DRL等 自動駕駛
    [21,26] 波束賦形 提高了頻譜效率,減輕了多徑衰落,確保了動態(tài)城市
    環(huán)境中的無縫連接和可靠性
    和速率 DRL, DL等 自動駕駛
    [2830] 信道估計 提升信道估計的精度、降低計算復(fù)雜性,實現(xiàn)動態(tài)適配 估計精度 GAN, CNN等 自動駕駛
    [32] 干擾管理 在資源有限場景中,實時應(yīng)對并緩解通信與感知任務(wù)中的干擾問題 均方誤差 DNN, ML等 無人機(jī)監(jiān)測
    [33,34] 動態(tài)頻譜分配 提供智能化的優(yōu)化算法和學(xué)習(xí)模型,
    實現(xiàn)高效的動態(tài)分配,提升系統(tǒng)性能
    準(zhǔn)確率、頻譜效率 DRL, RNN等 工業(yè)物聯(lián)網(wǎng)
    下載: 導(dǎo)出CSV
  • [1] ZHANG Shunqing, XIANG Chenlu, and XU Shugong. 6G: Connecting everything by 1000 times price reduction[J]. IEEE Open Journal of Vehicular Technology, 2020, 1: 107–115. doi: 10.1109/OJVT.2020.2980003.
    [2] 余顯祥, 姚雪, 楊婧, 等. 面向感知應(yīng)用的通感一體化信號設(shè)計技術(shù)與綜述[J]. 雷達(dá)學(xué)報, 2023, 12(2): 247–261. doi: 10.12000/JR23015.

    YU Xianxiang, YAO Xue, YANG Jing, et al. Radar-centric DFRC signal design: Overview and future research avenues[J]. Journal of Radars, 2023, 12(2): 247–261. doi: 10.12000/JR23015.
    [3] TAN D K P, HE Jia, LI Yanchun, et al. Integrated sensing and communication in 6G: Motivations, use cases, requirements, challenges and future directions[C]. IEEE International Online Symposium on Joint Communications & Sensing (JC&S), Dresden, Germany, 2021: 1–6. doi: 10.1109/JCS52304.2021.9376324.
    [4] WU Nan, JIANG Rongkun, WANG Xinyi, et al. AI-enhanced integrated sensing and communications: Advancements, challenges, and prospects[J]. IEEE Communications Magazine, 2024, 62(9): 144–150. doi: 10.1109/MCOM.001.2300724.
    [5] 林奕森, 甘德樵, 葛曉虎. AI賦能6G: 綠色通信的未來[J]. 移動通信, 2024, 48(8): 20–24, 55. doi: 10.3969/j.issn.1006-1010.20240621-0001.

    LIN Yisen, GAN Deqiao, and GE Xiaohu. AI-powered 6G: The future of green communications[J]. Mobile Communications, 2024, 48(8): 20–24, 55. doi: 10.3969/j.issn.1006-1010.20240621-0001.
    [6] 閆實, 彭木根, 王文博. 通信-感知-計算融合: 6G愿景與關(guān)鍵技術(shù)[J]. 北京郵電大學(xué)學(xué)報, 2021, 44(4): 1–11. doi: 10.13190/j.jbupt.2021-081.

    YAN Shi, PENG Mugen, and WANG Wenbo. Integration of communication, sensing and computing: The vision and key technologies of 6G[J]. Journal of Beijing University of Posts and Telecommunications, 2021, 44(4): 1–11. doi: 10.13190/j.jbupt.2021-081.
    [7] 王輝, 孟士堯, 賈敏. 空天地一體化場景中的6G通感算融合與數(shù)字孿生技術(shù)[J]. 無線電通信技術(shù), 2024, 50(6): 1057–1066. doi: 10.3969/j.issn.1003-3114.2024.06.001.

    WANG Hui, MENG Shiyao, and JIA Min. 6G communication-sensing-computing integrated space-air-ground digital twin network[J]. Radio Communications Technology, 2024, 50(6): 1057–1066. doi: 10.3969/j.issn.1003-3114.2024.06.001.
    [8] 陳新宇, 王衛(wèi)斌, 陸光輝. 基于AI agent的6G內(nèi)生智能技術(shù)框架及其應(yīng)用[J]. 移動通信, 2024, 48(7): 28–32. doi: 10.3969/j.issn.1006-1010.20240613-0001.

    CHEN Xinyu, WANG Weibin, and LU Guanghui. 6G native intelligent technology framework and its application based on AI agent[J]. Mobile Communications, 2024, 48(7): 28–32. doi: 10.3969/j.issn.1006-1010.20240613-0001.
    [9] ZHAO Junhui, Ren Ruixing, ZOU Dan, et al. IoV-Oriented integrated sensing, computation, and communication: System design and resource allocation[J]. IEEE Transactions on Vehicular Technology, 2024, 73(11): 16283–16294. doi: 10.1109/TVT.2024.3422270.
    [10] SALEM H, QUAMAR M D M, MANSOOR A, et al. Data-Driven integrated sensing and communication: Recent advances, challenges, and future prospects[J]. arXiv: 2308.09090, 2023.
    [11] 陳真, 杜曉宇, 唐杰, 等. 基于深度強(qiáng)化學(xué)習(xí)的RIS輔助通感融合網(wǎng)絡(luò): 挑戰(zhàn)與機(jī)遇[J]. 電子信息學(xué)報, 2024, 46(9): 3467–3473. doi: 10.11999/JEIT240086.

    CHEN Zhen, DU Xiaoyu, TANG Jie, et al. DRL-based RIS-assisted ISAC Network: Challenges and opportunities[J]. Journal of Electronics & Information Technology, 2024, 46(9): 3467–3473. doi: 10.11999/JEIT240086.
    [12] HOU Peng, HUANG Yi, ZHU Hongbin, et al. Distributed DRL-based integrated sensing, communication, and computation in cooperative UAV-enabled intelligent transportation systems[J]. IEEE Internet of Things Journal, 2025, 12(5): 5792–5806. doi: 10.1109/JIOT.2024.3489655.
    [13] LIANG Yipeng, XHEN Qimei, and HAO Jiang. Federated learning with integrated sensing, communication, and computation: Frameworks and performance analysis[J]. arXiv: 2409.11240, 2024.
    [14] LIU Peixi, ZHU Guangxu, WANG Shuai, et al. Toward ambient intelligence: Federated edge learning with task-oriented sensing, computation, and communication integration[J]. IEEE Journal of Selected Topics in Signal Processing, 2023, 17(1): 158–172. doi: 10.1109/JSTSP.2022.3226836.
    [15] JIAO Licheng, SHAO Yilin, SUN Long, et al. Advanced deep learning models for 6G: Overview, opportunities, and challenges[J] IEEE Access, 2024, 12: 133245–133314. doi: 10.1109/ACCESS.2024.3418900.
    [16] 王新奕, 費澤松, 周一青, 等. 面向物聯(lián)網(wǎng)的通感算智融合: 關(guān)鍵技術(shù)與未來展望[J]. 電子與信息學(xué)報, 2025, 47(4): 888-908. DOI: 10.11999/JEIT240806.

    WANG Xinyi, FEI Zesong, ZHOU Yiqing, et al. Integrated sensing, communication, computation, and intelligence towards IoT: Key technologies and future directions[J]. Journal of Electronics & Information Technology, 2025, 47(4): 888-908. DOI: 10.11999/JEIT240806.
    [17] 王友祥, 裴郁杉, 黃蓉, 等. 6G通感算一體化網(wǎng)絡(luò)架構(gòu)和關(guān)鍵技術(shù)研究[J]. 移動通信, 2023, 47(9): 2–10. doi: 10.3969/j.issn.1006-1010.20230904-0002.

    WANG Youxiang, PEI Yushan, HUANG Rong, et al. Network architecture and key technologies for 6G integrated communication, sensing and computing[J]. Mobile Communications, 2023, 47(9): 2–10. doi: 10.3969/j.issn.1006-1010.20230904-0002.
    [18] ZHANG Jifa, GUO Shaoyong, GONG Shiqi, et al. Intelligent waveform design for integrated sensing and communication[J]. IEEE Wireless Communications, 2025, 32(1): 166–173. doi: 10.1109/MWC.003.2400044.
    [19] KHORAMNEJAD F and HOSSAIN E. Generative AI for the optimization of next-generation wireless networks: Basics, state-of-the-art, and open challenges[J]. IEEE Communications Surveys & Tutorials, 2025. doi: 10.1109/COMST.2025.3535554.
    [20] LIU Chang, YUAN Weijie, LI Shuangyang, et al. Learning-based predictive beamforming for integrated sensing and communication in vehicular networks[J]. IEEE Journal on Selected Areas in Communications, 2022, 40(8): 2317–2334. doi: 10.1109/JSAC.2022.3180803.
    [21] LIU Yiyang, ZHANG Siyao, LI Xinmin, et al. Deep reinforcement learning-based beamforming design in ISAC-assisted vehicular networks[C]. IEEE Wireless Communications and Networking Conference, Dubai, United Arab Emirates, 2024: 1–6. doi: 10.1109/WCNC57260.2024.10571018.
    [22] VALCARCE A, KELA P, MANDELLI S, et al. The role of AI in 6G MAC[C]. 2024 Joint European Conference on Networks and Communications & 6G Summit, Antwerp, Belgium, 2024: 723–728. doi: 10.1109/EuCNC/6GSummit60053.2024.10597082.
    [23] REN Ruixing. Integrated sensing, communication and computation: Research status and future prospects[J]. 2024.
    [24] 馬丁友, 劉祥, 黃天耀, 等. 雷達(dá)通信一體化: 共用波形設(shè)計和性能邊界[J]. 雷達(dá)學(xué)報, 2022, 11(2): 198–212. doi: 10.12000/JR21146.

    MA Dingyou, LIU Xiang, HUANG Tianyao, et al. Joint radar and communications: Shared waveform designs and performance bounds[J]. Journal of Radars, 2022, 11(2): 198–212. doi: 10.12000/JR21146.
    [25] LIU Qian, ZHU Yuqian, LI Ming, et al. DRL-based secrecy rate optimization for RIS-assisted secure ISAC systems[J]. IEEE Transactions on Vehicular Technology, 2023, 72(12): 16871–16875. doi: 10.1109/TVT.2023.3297602.
    [26] ZHONG Kai, HU Jinfeng, PAN Cunhua, et al. Joint waveform and beamforming design for RIS-aided ISAC systems[J]. IEEE Signal Processing Letters, 2023, 30: 165–169. doi: 10.1109/LSP.2023.3242554.
    [27] 徐明楓, 李陽, 韓凱峰, 等. 基于GAN的導(dǎo)頻配置和信道估計聯(lián)合優(yōu)化算法[J]. 信息通信技術(shù)與政策, 2023, 49(9): 58–66. doi: 10.12267/j.issn.2096-5931.2023.09.009.

    XU Mingfeng, LI Yang, HAN Kaifeng, et al. GAN-based joint pilot configuration and channel estimation optimization method[J]. Information and Communications Technology and Policy, 2023, 49(9): 58–66. doi: 10.12267/j.issn.2096-5931.2023.09.009.
    [28] BALEVI E, DOSHI A, and ANDREWS J G. Massive MIMO channel estimation with an untrained deep neural network[J]. IEEE Transactions on Wireless Communications, 2020, 19(3): 2079–2090. doi: 10.1109/TWC.2019.2962474.
    [29] SAFARI M S, POURAHMADI V, and SODAGARI S. Deep UL2DL: Data-driven channel knowledge transfer from uplink to downlink[J]. IEEE Open Journal of Vehicular Technology, 2020, 1: 29–44. doi: 10.1109/OJVT.2019.2962631.
    [30] DU Ying, LI Yang, XU Mingfeng, et al. A joint channel estimation and compression method based on GAN in 6G communication systems[J]. Applied Sciences, 2023, 13(4): 2319. doi: 10.3390/app13042319.
    [31] NGUYEN C, HOANG T M, and CHEEMA A A. Channel estimation using CNN-LSTM in RIS-NOMA assisted 6G network[J]. IEEE Transactions on Machine Learning in Communications and Networking, 2023, 1: 43–60. doi: 10.1109/TMLCN.2023.3278232.
    [32] LIU Xiangnan, ZHANG Haijun, LONG Keping, et al. Distributed unsupervised learning for interference management in integrated sensing and communication systems[J]. IEEE Transactions on Wireless Communications, 2023, 22(12): 9301–9312. doi: 10.1109/TWC.2023.3269815.
    [33] GAO Kaixuan, WANG Huiqiang, LU Hongwu, et al. Toward 5G NR high-precision indoor positioning via channel frequency response: A new paradigm and dataset generation method[J]. IEEE Journal on Selected Areas in Communications, 2022, 40(7): 2233–2247. doi: 10.1109/JSAC.2022.3157397.
    [34] SAIDUTTA Y M, ABDI A, and FEKRI F. Joint source-channel coding over additive noise analog channels using mixture of variational autoencoders[J]. IEEE Journal on Selected Areas in Communications, 2021, 39(7): 2000–2013. doi: 10.1109/JSAC.2021.3078489.
    [35] LIU Boxun, LIU Yuanyu, GAO Shijian, et al. LLM4CP: Adapting large language models for channel prediction[J]. Communications and Information Networks, 2024, 9(2): 113–125. doi: 10.23919/JCIN.2024.10582829.
  • 加載中
圖(6) / 表(3)
計量
  • 文章訪問數(shù):  250
  • HTML全文瀏覽量:  84
  • PDF下載量:  36
  • 被引次數(shù): 0
出版歷程
  • 收稿日期:  2025-04-07
  • 修回日期:  2025-06-04
  • 網(wǎng)絡(luò)出版日期:  2025-06-14

目錄

    /

    返回文章
    返回