無線傳感網(wǎng)中的迭代加權(quán)最小二乘定位算法
doi: 10.11999/JEIT250203 cstr: 32379.14.JEIT250203
-
1.
浙江工商大學(xué)信息與電子工程學(xué)院 杭州 310018
-
2.
東南大學(xué)移動(dòng)信息與科學(xué)工程學(xué)院 南京 210096
Iterative Weighted Least Square Localization Algorithm in Wireless Sensor Networks
-
1.
College of Information and Electronic Engineering, Zhejiang Gongshang University, Hangzhou 310018, China
-
2.
National Mobile Communication Research Laboratory, Southeast University, Nanjing 210096, China
-
摘要: 物聯(lián)網(wǎng)應(yīng)用的快速發(fā)展,帶來了對(duì)無線定位的廣泛需求,但非視距(NLOS)傳輸環(huán)境對(duì)無線定位方法精度具有巨大影響。因此該文基于到達(dá)時(shí)間(TOA)測(cè)量與雙靜態(tài)節(jié)點(diǎn)組合定義了一種位置殘差,并據(jù)此提出運(yùn)用迭代加權(quán)最小二乘(IWLS)原理的無線定位算法。算法在當(dāng)前WLS定位結(jié)果基礎(chǔ)上,通過計(jì)算位置殘差獲得反映NLOS嚴(yán)重程度的權(quán)值向量,利用權(quán)值向量在下一次WLS估計(jì)中限制NLOS影響,產(chǎn)生更加精確的定位結(jié)果。在算法的執(zhí)行過程中,殘差-權(quán)值計(jì)算方式和NLOS測(cè)距數(shù)量都會(huì)影響定位性能,因此論文通過仿真分析了這些因素對(duì)于均方根誤差(RMSE)和累計(jì)概率密度函數(shù)(CDF)的影響,確定了算法的最優(yōu)參數(shù)設(shè)定。最后論文對(duì)比了IWLS算法和傳統(tǒng)定位算法的性能,仿真結(jié)果表明,在典型非視距傳輸環(huán)境下,該文提出的IWLS算法性能優(yōu)于傳統(tǒng)算法。
-
關(guān)鍵詞:
- 無線定位 /
- 迭代加權(quán)最小二乘 /
- TOA /
- 位置殘差 /
- 非視距誤差
Abstract:Objective Wireless positioning technology has gained increasing attention in the Internet of Things (IoT), Intelligent Transportation Systems (ITS), and Location-Based Services (LBS). However, Non-Line-of-Sight (NLOS) errors remain a major obstacle to positioning accuracy. When Line-of-Sight (LOS) propagation between mobile and static sensors is blocked by obstacles, ranging measurement errors increase substantially. Suppressing or mitigating NLOS errors is therefore essential for improving wireless positioning performance. Although existing approaches—such as Kalman filtering, hybrid Time Difference of Arrival (TDOA)/Angle of Arrival (AOA) algorithms, and reinforcement learning—have shown some effectiveness, each faces limitations. Algorithm performance can be affected by network topology, lack adaptability in complex environments, or require high computational costs. Moreover, the statistical behavior of NLOS errors remains poorly characterized, making accurate positioning difficult in large-scale settings. This study proposes an Iterative Weighted Least Squares (IWLS) algorithm based on Time of Arrival (TOA) measurements. By defining position residuals and incorporating a residual-based weighting strategy into the WLS framework, the method suppresses NLOS errors effectively. Compared with traditional approaches, the proposed algorithm achieves higher positioning accuracy and better adaptability in NLOS scenarios, while retaining the ease of implementation offered by TOA-based techniques. Methods This study defines a new position residual based on TOA measurements from two Mobile Sensors (MSs). The residual typically approaches zero under LOS conditions but tends to increase significantly under NLOS conditions. As this residual effectively reflects deviations induced by NLOS errors, it is used to assign weights to individual equations within the linear positioning system. A residual-based weighting strategy is proposed, in which each weight is computed from the corresponding position residual, and the Weighted Least Squares (WLS) method is applied to regulate the influence of each equation. The position is estimated by iteratively updating the residuals, computing the associated weights, and applying WLS, thereby progressively reducing the positioning error and yielding an accurate estimate of the MS location. Results and Discussions The performance of the proposed algorithm is evaluated through computer simulations under varying Signal-to-Diffraction Ratio (SDR) and maximum NLOS error (NLOSmax) conditions. The simulation results indicate the following: (1) When the number of NLOS-affected static nodes is two, the Cumulative Distribution Function (CDF) of positioning error for the proposed IWLS algorithm is below 92%@5m, outperforming other tested algorithms and maintaining a consistent advantage ( Fig. 6 ). (2) In the NLOSmax scenario (Fig. 7 ), the IWLS algorithm achieves better positioning accuracy than conventional methods when the number of NLOS-affected nodes is small. As this number increases, the error of the proposed algorithm grows more gradually. (3) In the SDR scenario (Fig. 8 ), although all algorithms show degraded performance as SDR increases, the IWLS algorithm consistently yields the lowest Root Mean Square Error (RMSE) and remains closest to the Cramér-Rao Lower Bound (CRLB).Conclusions This study proposes an IWLS localization algorithm inspired by the relationship between position residuals and the reliability of localization equations. A position residual is defined using range measurements from two static sensors, and a residual-based weighting strategy is developed to suppress the influence of NLOS errors. During each iteration, the weighting vector downregulates the contribution of equations affected by large NLOS errors, thereby improving positioning accuracy. Simulation results show that the IWLS algorithm outperforms conventional localization methods under NLOS conditions and achieves RMSE values close to the CRLB. Notably, when two static sensors are affected by NLOS errors, the localization RMSE can be reduced to approximately 2 m, representing 2% of the coverage radius. -
表 1 對(duì)比方法描述
對(duì)比方法 描述 chan YT Chan提出的TS-WLS定位算法[25] $2{\text{SS-R}}$ 本文提出的位置殘差倒數(shù)的1次冪 $2{\text{SS-}} {{\mathrm{R}}^2}$ 本文提出的位置殘差倒數(shù)的2次冪 $2{\text{SS-}}{{\mathrm{R}}^3}$ 本文提出的位置殘差倒數(shù)的3次冪 下載: 導(dǎo)出CSV
-
[1] SAFA A and AL-ZAWQARI A. Co-design of a robot controller board and indoor positioning system for IoT-enabled applications[C]. 2024 International Conference on Microelectronics (ICM), Doha, Qatar, 2024: 1–6. doi: 10.1109/ICM63406.2024.10815886. [2] 錢志鴻, 田春生, 郭銀景, 等. 智能網(wǎng)聯(lián)交通系統(tǒng)的關(guān)鍵技術(shù)與發(fā)展[J]. 電子與信息學(xué)報(bào), 2020, 42(1): 2–19. doi: 10.11999/JEIT190787.QIAN Zhihong, TIAN Chunsheng, GUO Yinjing, et al. The key technology and development of intelligent and connected transportation system[J]. Journal of Electronics & Information Technology, 2020, 42(1): 2–19. doi: 10.11999/JEIT190787. [3] ABBA A M, SANUSI J, OSHIGA O, et al. A review of localization techniques in wireless sensor networks[C]. 2023 2nd International Conference on Multidisciplinary Engineering and Applied Science (ICMEAS), Abuja, Nigeria, 2023: 1–5. doi: 10.1109/ICMEAS58693.2023.10429886. [4] CHAMBON A, RACHEDI A, SAHLI A, et al. Managing a resilient multitier architecture for unstable IoT networks in location based-services[J]. IEEE Transactions on Network and Service Management, 2024, 21(5): 5304–5320. doi: 10.1109/TNSM.2024.3449044. [5] CUI Jianfeng, LIANG Hong, WANG Zhiwen, et al. Spatial distribution characteristics of positioning accuracy for TOA localization[J]. IEEE Sensors Journal, 2025, 25(3): 5003–5012. doi: 10.1109/JSEN.2024.3512613. [6] LIN Yupei, LI Yicheng, SONG Dan, et al. Sensor selection for TOA-based multitarget localization with nonshared sensors[J]. IEEE Transactions on Aerospace and Electronic Systems, 2025, 61(2): 2383–2396. doi: 10.1109/TAES.2024.3469919. [7] HUANG Lixiong, CHEN Ruizhi, CHEN Ying, et al. Robust TDOA-based indoor localization using improved clock-sync-scheme and multilevel constrained ARPF[J]. IEEE Sensors Journal, 2023, 23(10): 10633–10643. doi: 10.1109/JSEN.2023.3259540. [8] ZOU Yanbin. Semidefinite programming algorithms for 3-D AOA-based hybrid localization[J]. IEEE Open Journal of Signal Processing, 2023, 4: 294–303. doi: 10.1109/OJSP.2023.3279010. [9] 左燕, 陳志猛, 蔡立平. 基于約束總體最小二乘的單站DOA/TDOA聯(lián)合誤差校正與定位算法[J]. 電子與信息學(xué)報(bào), 2019, 41(6): 1317–1323. doi: 10.11999/JEIT180655.ZUO Yan, CHEN Zhimeng, and CAI Liping. Single-observer DOA/TDOA registration and passive localization based on constrained total least squares[J]. Journal of Electronics & Information Technology, 2019, 41(6): 1317–1323. doi: 10.11999/JEIT180655. [10] 秦耀璐, 楊淑萍, 束鋒, 等. 基于TDOA/FDOA多星聯(lián)合定位誤差與衛(wèi)星構(gòu)型分析[J]. 電波科學(xué)學(xué)報(bào), 2018, 33(5): 565–574. doi: 10.13443/j.cjors.2017080903.QIN Yaolu, YANG Shuping, SHU Feng, et al. TDOA/FDOA joint location errors and satellite configuration for passive multi-satellite localization systems[J]. Chinese Journal of Radio Science, 2018, 33(5): 565–574. doi: 10.13443/j.cjors.2017080903. [11] 孫霆, 董春曦, 毛昱. 一種基于半定松弛技術(shù)的TDOA-FDOA無源定位算法[J]. 電子與信息學(xué)報(bào), 2020, 42(7): 1599–1605. doi: 10.11999/JEIT190435.SUN Ting, DONG Chunxi, and MAO Yu. A TDOA-FDOA passive positioning algorithm based on the semi-definite relaxation technique[J]. Journal of Electronics & Information Technology, 2020, 42(7): 1599–1605. doi: 10.11999/JEIT190435. [12] 束鋒, 朱偉強(qiáng), 陸錦輝, 等. 基于最大比合并的最大似然TDOA/FDOA聯(lián)合定位方法[J]. 宇航學(xué)報(bào), 2010, 31(4): 1143–1148. doi: 10.3873/j.issn.1000-1328.2010.04.033.SHU Feng, ZHU Weiqiang, LU Jinhui, et al. Maximum ratio combining based maximum likelihood TDOA/FDOA joint localization[J]. Journal of Astronautics, 2010, 31(4): 1143–1148. doi: 10.3873/j.issn.1000-1328.2010.04.033. [13] BAI Jiatong, CHEN Minghao, LI Yifan, et al. Multi-modal iterative and deep fusion frameworks for enhanced passive DOA sensing via a green massive H2AD MIMO receiver[J]. IEEE Transactions on Green Communications and Networking, 2025. doi: 10.1109/TGCN.2025.3543476. [14] WANG Fang, TANG Hai, and CHEN Jialei. Survey on NLOS identification and error mitigation for UWB indoor positioning[J]. Electronics, 2023, 12(7): 1678. doi: 10.3390/electronics12071678. [15] QIN Zhengyang, MENG Zhaozong, LI Zhen, et al. Compensating the NLoS occlusion errors of UWB for pedestrian localization with MIMU[J]. IEEE Sensors Journal, 2023, 23(11): 12146–12158. doi: 10.1109/JSEN.2023.3266433. [16] CHEN Haishao, CAO Li; and YUE Yinggao. TDOA/AOA hybrid localization based on improved dandelion optimization algorithm for mobile location estimation under NLOS simulation environment[J]. Wireless Personal Communications, 2023, 131(4): 2747–2772. doi: 10.1007/s11277-023-10578-y. [17] BIANCHI V, CIAMPOLINI P, and DE MUNARI I. RSSI-based indoor localization and identification for ZigBee wireless sensor networks in smart homes[J]. IEEE Transactions on Instrumentation and Measurement, 2019, 68(2): 566–575. doi: 10.1109/TIM.2018.2851675. [18] ALAGHA A, SINGH S, MIZOUNI R, et al. Target localization using multi-agent deep reinforcement learning with proximal policy optimization[J]. Future Generation Computer Systems, 2022, 136: 342–357. doi: 10.1016/j.future.2022.06.015. [19] 聞建剛, 岳洋洋, 華驚宇, 等. NLOS狀態(tài)信息輔助協(xié)方差矩陣修正的無線網(wǎng)絡(luò)定位方法[J]. 傳感技術(shù)學(xué)報(bào), 2022, 35(11): 1561–1567. doi: 10.3969/j.issn.1004-1699.2022.011.017.WEN Jiangang, YUE Yangyang, HUA Jingyu, et al. Wireless network positioning method with covariance matrix correction assisted by NLOS state information[J]. Chinese Journal of Sensors and Actuators, 2022, 35(11): 1561–1567. doi: 10.3969/j.issn.1004-1699.2022.011.017. [20] 尹燁佳, 華驚宇, 李楓, 等. 非視距環(huán)境中的無線網(wǎng)絡(luò)殘差加權(quán)定位算法[J]. 傳感技術(shù)學(xué)報(bào), 2019, 32(5): 749–755. doi: 10.3969/j.issn.1004-1699.2019.05.019.YIN Yejia, HUA Jingyu, LI Feng, et al. Residual weighted based wireless localization algorithm in NLOS environments[J]. Chinese Journal of Sensors and Actuators, 2019, 32(5): 749–755. doi: 10.3969/j.issn.1004-1699.2019.05.019. [21] HUA Jingyu, YIN Yejia, WANG Anding, et al. Geometry-based non-line-of-sight error mitigation and localization in wireless communications[J]. Science China Information Sciences, 2019, 62(10): 202301. doi: 10.1007/s11432-019-9909-5. [22] KE Wei and WU Lenan. Constrained least squares algorithm for TOA-based mobile location under NLOS environments[C]. 2009 5th International Conference on Wireless Communications, Networking and Mobile Computing, Beijing, China, 2009: 1–4. doi: 10.1109/WICOM.2009.5302854. [23] GHARI P M, SHAHBAZIAN R, and GHORASHI S A. Wireless sensor network localization in harsh environments using SDP relaxation[J]. IEEE Communications Letters, 2016, 20(1): 137–140. doi: 10.1109/LCOMM.2015.2498179. [24] CHEN Pichun. A non-line-of-sight error mitigation algorithm in location estimation[C]. 1999 IEEE Wireless Communications and Networking Conference, New Orleans, USA, 1999: 316–320. doi: 10.1109/WCNC.1999.797838. [25] CHAN Y T and HO K C. A simple and efficient estimator for hyperbolic location[J]. IEEE Transactions on Signal Processing, 1994, 42(8): 1905–1915. doi: 10.1109/78.301830. [26] BISWAS P and YE Yinyu. Semidefinite programming for ad hoc wireless sensor network localization[C]. The 3rd International Symposium on Information Processing in Sensor Networks, Berkeley, USA, 2004: 46–54. doi: 10.1145/984622.984630. [27] ZHENG Xiaoneng, HUA Jingyu, ZHENG Zhilong, et al. LLOP localization algorithm with optimal scaling in NLOS wireless propagations[C]. 2013 IEEE 4th International Conference on Electronics Information and Emergency Communication, Beijing, China, 2013: 45–48. doi: 10.1109/ICEIEC.2013.6835450. [28] WANG Jiale, WEN Jiangang, HUA Jingyu, et al. Angle residual-based NLOS suppression and localization method in wireless sensor networks[J]. IEEE Sensors Journal, 2023, 23(13): 14388–14396. doi: 10.1109/JSEN.2023.3275627. [29] CHAN Y T, TSUI W Y, SO H C, et al. Time-of-arrival based localization under NLOS conditions[J]. IEEE Transactions on Vehicular Technology, 2006, 55(1): 17–24. doi: 10.1109/TVT.2005.861207. -