一级黄色片免费播放|中国黄色视频播放片|日本三级a|可以直接考播黄片影视免费一级毛片

高級(jí)搜索

留言板

尊敬的讀者、作者、審稿人, 關(guān)于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復(fù)。謝謝您的支持!

姓名
郵箱
手機(jī)號(hào)碼
標(biāo)題
留言內(nèi)容
驗(yàn)證碼

無線傳感網(wǎng)中的迭代加權(quán)最小二乘定位算法

聞建剛 馮文淑 馮曉斐 華驚宇 余緒濤

聞建剛, 馮文淑, 馮曉斐, 華驚宇, 余緒濤. 無線傳感網(wǎng)中的迭代加權(quán)最小二乘定位算法[J]. 電子與信息學(xué)報(bào), 2025, 47(3): 582-589. doi: 10.11999/JEIT250203
引用本文: 聞建剛, 馮文淑, 馮曉斐, 華驚宇, 余緒濤. 無線傳感網(wǎng)中的迭代加權(quán)最小二乘定位算法[J]. 電子與信息學(xué)報(bào), 2025, 47(3): 582-589. doi: 10.11999/JEIT250203
WEN Jiangang, FENG Wenshu, FENG Xiaofei, HUA Jingyu, YU Xutao. Iterative Weighted Least Square Localization Algorithm in Wireless Sensor Networks[J]. Journal of Electronics & Information Technology, 2025, 47(3): 582-589. doi: 10.11999/JEIT250203
Citation: WEN Jiangang, FENG Wenshu, FENG Xiaofei, HUA Jingyu, YU Xutao. Iterative Weighted Least Square Localization Algorithm in Wireless Sensor Networks[J]. Journal of Electronics & Information Technology, 2025, 47(3): 582-589. doi: 10.11999/JEIT250203

無線傳感網(wǎng)中的迭代加權(quán)最小二乘定位算法

doi: 10.11999/JEIT250203 cstr: 32379.14.JEIT250203
基金項(xiàng)目: 國(guó)家自然科學(xué)基金(62271445)
詳細(xì)信息
    作者簡(jiǎn)介:

    聞建剛:男,講師,博士,研究方向?yàn)闊o線通信中的信號(hào)處理

    馮文淑:女,碩士生,研究方向?yàn)橥ㄐ排c網(wǎng)絡(luò)

    馮曉斐:女,副教授,碩士,研究方向?yàn)橥ㄐ排c網(wǎng)絡(luò)

    華驚宇:男,教授,博士,研究方向?yàn)闊o線定位、通信信號(hào)處理

    余緒濤:女,教授,博士,研究方向?yàn)橥ㄐ排c網(wǎng)絡(luò)

    通訊作者:

    華驚宇 eehjy@163.com

  • 中圖分類號(hào): TN929.5

Iterative Weighted Least Square Localization Algorithm in Wireless Sensor Networks

Funds: The National Natural Science Foundation of China (62271445)
  • 摘要: 物聯(lián)網(wǎng)應(yīng)用的快速發(fā)展,帶來了對(duì)無線定位的廣泛需求,但非視距(NLOS)傳輸環(huán)境對(duì)無線定位方法精度具有巨大影響。因此該文基于到達(dá)時(shí)間(TOA)測(cè)量與雙靜態(tài)節(jié)點(diǎn)組合定義了一種位置殘差,并據(jù)此提出運(yùn)用迭代加權(quán)最小二乘(IWLS)原理的無線定位算法。算法在當(dāng)前WLS定位結(jié)果基礎(chǔ)上,通過計(jì)算位置殘差獲得反映NLOS嚴(yán)重程度的權(quán)值向量,利用權(quán)值向量在下一次WLS估計(jì)中限制NLOS影響,產(chǎn)生更加精確的定位結(jié)果。在算法的執(zhí)行過程中,殘差-權(quán)值計(jì)算方式和NLOS測(cè)距數(shù)量都會(huì)影響定位性能,因此論文通過仿真分析了這些因素對(duì)于均方根誤差(RMSE)和累計(jì)概率密度函數(shù)(CDF)的影響,確定了算法的最優(yōu)參數(shù)設(shè)定。最后論文對(duì)比了IWLS算法和傳統(tǒng)定位算法的性能,仿真結(jié)果表明,在典型非視距傳輸環(huán)境下,該文提出的IWLS算法性能優(yōu)于傳統(tǒng)算法。
  • 圖  1  位置殘差示意圖

    圖  2  IWLS算法流程圖

    圖  3  不同權(quán)值計(jì)算方法的定位CDF性能

    圖  4  不同權(quán)值計(jì)算方法的定位RMSE性能

    圖  5  位置殘差均值與迭代次數(shù)關(guān)系

    圖  6  CDF性能比較:測(cè)距噪聲標(biāo)準(zhǔn)差1 m

    圖  7  RMSE性能比較:測(cè)距標(biāo)準(zhǔn)差1 m

    圖  8  不同測(cè)距標(biāo)準(zhǔn)差的RMSE比較:NLOSmax=40 m

    表  1  對(duì)比方法描述

    對(duì)比方法 描述
    chan YT Chan提出的TS-WLS定位算法[25]
    $2{\text{SS-R}}$ 本文提出的位置殘差倒數(shù)的1次冪
    $2{\text{SS-}} {{\mathrm{R}}^2}$ 本文提出的位置殘差倒數(shù)的2次冪
    $2{\text{SS-}}{{\mathrm{R}}^3}$ 本文提出的位置殘差倒數(shù)的3次冪
    下載: 導(dǎo)出CSV

    表  2  算法對(duì)比

    算法 描述
    CLS 約束最小二乘法[22]
    SDP 半正定規(guī)劃算法[23]
    RWGH 殘差加權(quán)算法[24]
    TS-WLS 已知TDOA測(cè)量值情況下,使用兩步WLS算法[26]
    OptLLOP 擴(kuò)展的LLOP算法[27]
    TS-WLS-A 基于角度殘差的兩步WLS算法[28]
    CRLB 克拉默-拉奧下界(Cramer-Rao Lower Bound)
    position res-2SS 本文提出的以位置殘差倒數(shù)為權(quán)值的IWLS算法
    下載: 導(dǎo)出CSV
  • [1] SAFA A and AL-ZAWQARI A. Co-design of a robot controller board and indoor positioning system for IoT-enabled applications[C]. 2024 International Conference on Microelectronics (ICM), Doha, Qatar, 2024: 1–6. doi: 10.1109/ICM63406.2024.10815886.
    [2] 錢志鴻, 田春生, 郭銀景, 等. 智能網(wǎng)聯(lián)交通系統(tǒng)的關(guān)鍵技術(shù)與發(fā)展[J]. 電子與信息學(xué)報(bào), 2020, 42(1): 2–19. doi: 10.11999/JEIT190787.

    QIAN Zhihong, TIAN Chunsheng, GUO Yinjing, et al. The key technology and development of intelligent and connected transportation system[J]. Journal of Electronics & Information Technology, 2020, 42(1): 2–19. doi: 10.11999/JEIT190787.
    [3] ABBA A M, SANUSI J, OSHIGA O, et al. A review of localization techniques in wireless sensor networks[C]. 2023 2nd International Conference on Multidisciplinary Engineering and Applied Science (ICMEAS), Abuja, Nigeria, 2023: 1–5. doi: 10.1109/ICMEAS58693.2023.10429886.
    [4] CHAMBON A, RACHEDI A, SAHLI A, et al. Managing a resilient multitier architecture for unstable IoT networks in location based-services[J]. IEEE Transactions on Network and Service Management, 2024, 21(5): 5304–5320. doi: 10.1109/TNSM.2024.3449044.
    [5] CUI Jianfeng, LIANG Hong, WANG Zhiwen, et al. Spatial distribution characteristics of positioning accuracy for TOA localization[J]. IEEE Sensors Journal, 2025, 25(3): 5003–5012. doi: 10.1109/JSEN.2024.3512613.
    [6] LIN Yupei, LI Yicheng, SONG Dan, et al. Sensor selection for TOA-based multitarget localization with nonshared sensors[J]. IEEE Transactions on Aerospace and Electronic Systems, 2025, 61(2): 2383–2396. doi: 10.1109/TAES.2024.3469919.
    [7] HUANG Lixiong, CHEN Ruizhi, CHEN Ying, et al. Robust TDOA-based indoor localization using improved clock-sync-scheme and multilevel constrained ARPF[J]. IEEE Sensors Journal, 2023, 23(10): 10633–10643. doi: 10.1109/JSEN.2023.3259540.
    [8] ZOU Yanbin. Semidefinite programming algorithms for 3-D AOA-based hybrid localization[J]. IEEE Open Journal of Signal Processing, 2023, 4: 294–303. doi: 10.1109/OJSP.2023.3279010.
    [9] 左燕, 陳志猛, 蔡立平. 基于約束總體最小二乘的單站DOA/TDOA聯(lián)合誤差校正與定位算法[J]. 電子與信息學(xué)報(bào), 2019, 41(6): 1317–1323. doi: 10.11999/JEIT180655.

    ZUO Yan, CHEN Zhimeng, and CAI Liping. Single-observer DOA/TDOA registration and passive localization based on constrained total least squares[J]. Journal of Electronics & Information Technology, 2019, 41(6): 1317–1323. doi: 10.11999/JEIT180655.
    [10] 秦耀璐, 楊淑萍, 束鋒, 等. 基于TDOA/FDOA多星聯(lián)合定位誤差與衛(wèi)星構(gòu)型分析[J]. 電波科學(xué)學(xué)報(bào), 2018, 33(5): 565–574. doi: 10.13443/j.cjors.2017080903.

    QIN Yaolu, YANG Shuping, SHU Feng, et al. TDOA/FDOA joint location errors and satellite configuration for passive multi-satellite localization systems[J]. Chinese Journal of Radio Science, 2018, 33(5): 565–574. doi: 10.13443/j.cjors.2017080903.
    [11] 孫霆, 董春曦, 毛昱. 一種基于半定松弛技術(shù)的TDOA-FDOA無源定位算法[J]. 電子與信息學(xué)報(bào), 2020, 42(7): 1599–1605. doi: 10.11999/JEIT190435.

    SUN Ting, DONG Chunxi, and MAO Yu. A TDOA-FDOA passive positioning algorithm based on the semi-definite relaxation technique[J]. Journal of Electronics & Information Technology, 2020, 42(7): 1599–1605. doi: 10.11999/JEIT190435.
    [12] 束鋒, 朱偉強(qiáng), 陸錦輝, 等. 基于最大比合并的最大似然TDOA/FDOA聯(lián)合定位方法[J]. 宇航學(xué)報(bào), 2010, 31(4): 1143–1148. doi: 10.3873/j.issn.1000-1328.2010.04.033.

    SHU Feng, ZHU Weiqiang, LU Jinhui, et al. Maximum ratio combining based maximum likelihood TDOA/FDOA joint localization[J]. Journal of Astronautics, 2010, 31(4): 1143–1148. doi: 10.3873/j.issn.1000-1328.2010.04.033.
    [13] BAI Jiatong, CHEN Minghao, LI Yifan, et al. Multi-modal iterative and deep fusion frameworks for enhanced passive DOA sensing via a green massive H2AD MIMO receiver[J]. IEEE Transactions on Green Communications and Networking, 2025. doi: 10.1109/TGCN.2025.3543476.
    [14] WANG Fang, TANG Hai, and CHEN Jialei. Survey on NLOS identification and error mitigation for UWB indoor positioning[J]. Electronics, 2023, 12(7): 1678. doi: 10.3390/electronics12071678.
    [15] QIN Zhengyang, MENG Zhaozong, LI Zhen, et al. Compensating the NLoS occlusion errors of UWB for pedestrian localization with MIMU[J]. IEEE Sensors Journal, 2023, 23(11): 12146–12158. doi: 10.1109/JSEN.2023.3266433.
    [16] CHEN Haishao, CAO Li; and YUE Yinggao. TDOA/AOA hybrid localization based on improved dandelion optimization algorithm for mobile location estimation under NLOS simulation environment[J]. Wireless Personal Communications, 2023, 131(4): 2747–2772. doi: 10.1007/s11277-023-10578-y.
    [17] BIANCHI V, CIAMPOLINI P, and DE MUNARI I. RSSI-based indoor localization and identification for ZigBee wireless sensor networks in smart homes[J]. IEEE Transactions on Instrumentation and Measurement, 2019, 68(2): 566–575. doi: 10.1109/TIM.2018.2851675.
    [18] ALAGHA A, SINGH S, MIZOUNI R, et al. Target localization using multi-agent deep reinforcement learning with proximal policy optimization[J]. Future Generation Computer Systems, 2022, 136: 342–357. doi: 10.1016/j.future.2022.06.015.
    [19] 聞建剛, 岳洋洋, 華驚宇, 等. NLOS狀態(tài)信息輔助協(xié)方差矩陣修正的無線網(wǎng)絡(luò)定位方法[J]. 傳感技術(shù)學(xué)報(bào), 2022, 35(11): 1561–1567. doi: 10.3969/j.issn.1004-1699.2022.011.017.

    WEN Jiangang, YUE Yangyang, HUA Jingyu, et al. Wireless network positioning method with covariance matrix correction assisted by NLOS state information[J]. Chinese Journal of Sensors and Actuators, 2022, 35(11): 1561–1567. doi: 10.3969/j.issn.1004-1699.2022.011.017.
    [20] 尹燁佳, 華驚宇, 李楓, 等. 非視距環(huán)境中的無線網(wǎng)絡(luò)殘差加權(quán)定位算法[J]. 傳感技術(shù)學(xué)報(bào), 2019, 32(5): 749–755. doi: 10.3969/j.issn.1004-1699.2019.05.019.

    YIN Yejia, HUA Jingyu, LI Feng, et al. Residual weighted based wireless localization algorithm in NLOS environments[J]. Chinese Journal of Sensors and Actuators, 2019, 32(5): 749–755. doi: 10.3969/j.issn.1004-1699.2019.05.019.
    [21] HUA Jingyu, YIN Yejia, WANG Anding, et al. Geometry-based non-line-of-sight error mitigation and localization in wireless communications[J]. Science China Information Sciences, 2019, 62(10): 202301. doi: 10.1007/s11432-019-9909-5.
    [22] KE Wei and WU Lenan. Constrained least squares algorithm for TOA-based mobile location under NLOS environments[C]. 2009 5th International Conference on Wireless Communications, Networking and Mobile Computing, Beijing, China, 2009: 1–4. doi: 10.1109/WICOM.2009.5302854.
    [23] GHARI P M, SHAHBAZIAN R, and GHORASHI S A. Wireless sensor network localization in harsh environments using SDP relaxation[J]. IEEE Communications Letters, 2016, 20(1): 137–140. doi: 10.1109/LCOMM.2015.2498179.
    [24] CHEN Pichun. A non-line-of-sight error mitigation algorithm in location estimation[C]. 1999 IEEE Wireless Communications and Networking Conference, New Orleans, USA, 1999: 316–320. doi: 10.1109/WCNC.1999.797838.
    [25] CHAN Y T and HO K C. A simple and efficient estimator for hyperbolic location[J]. IEEE Transactions on Signal Processing, 1994, 42(8): 1905–1915. doi: 10.1109/78.301830.
    [26] BISWAS P and YE Yinyu. Semidefinite programming for ad hoc wireless sensor network localization[C]. The 3rd International Symposium on Information Processing in Sensor Networks, Berkeley, USA, 2004: 46–54. doi: 10.1145/984622.984630.
    [27] ZHENG Xiaoneng, HUA Jingyu, ZHENG Zhilong, et al. LLOP localization algorithm with optimal scaling in NLOS wireless propagations[C]. 2013 IEEE 4th International Conference on Electronics Information and Emergency Communication, Beijing, China, 2013: 45–48. doi: 10.1109/ICEIEC.2013.6835450.
    [28] WANG Jiale, WEN Jiangang, HUA Jingyu, et al. Angle residual-based NLOS suppression and localization method in wireless sensor networks[J]. IEEE Sensors Journal, 2023, 23(13): 14388–14396. doi: 10.1109/JSEN.2023.3275627.
    [29] CHAN Y T, TSUI W Y, SO H C, et al. Time-of-arrival based localization under NLOS conditions[J]. IEEE Transactions on Vehicular Technology, 2006, 55(1): 17–24. doi: 10.1109/TVT.2005.861207.
  • 加載中
圖(8) / 表(2)
計(jì)量
  • 文章訪問數(shù):  66
  • HTML全文瀏覽量:  23
  • PDF下載量:  14
  • 被引次數(shù): 0
出版歷程
  • 收稿日期:  2025-03-25
  • 修回日期:  2025-05-29
  • 網(wǎng)絡(luò)出版日期:  2025-06-14
  • 刊出日期:  2025-03-10

目錄

    /

    返回文章
    返回