一级黄色片免费播放|中国黄色视频播放片|日本三级a|可以直接考播黄片影视免费一级毛片

高級搜索

留言板

尊敬的讀者、作者、審稿人, 關(guān)于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復(fù)。謝謝您的支持!

姓名
郵箱
手機(jī)號碼
標(biāo)題
留言內(nèi)容
驗(yàn)證碼

RIS輔助通信場景中一種基于展開信道的物理層密鑰生成方法

楊立君 陳子碩 陸海濤 郭林

楊立君, 陳子碩, 陸海濤, 郭林. RIS輔助通信場景中一種基于展開信道的物理層密鑰生成方法[J]. 電子與信息學(xué)報(bào), 2025, 47(2): 449-457. doi: 10.11999/JEIT240988
引用本文: 楊立君, 陳子碩, 陸海濤, 郭林. RIS輔助通信場景中一種基于展開信道的物理層密鑰生成方法[J]. 電子與信息學(xué)報(bào), 2025, 47(2): 449-457. doi: 10.11999/JEIT240988
YANG Lijun, CHEN Zishuo, LU Haitao, GUO Lin. An Unfolded Channel-based Physical Layer Key Generation Method For Reconfigurable Intelligent Surface-Assisted Communication Systems[J]. Journal of Electronics & Information Technology, 2025, 47(2): 449-457. doi: 10.11999/JEIT240988
Citation: YANG Lijun, CHEN Zishuo, LU Haitao, GUO Lin. An Unfolded Channel-based Physical Layer Key Generation Method For Reconfigurable Intelligent Surface-Assisted Communication Systems[J]. Journal of Electronics & Information Technology, 2025, 47(2): 449-457. doi: 10.11999/JEIT240988

RIS輔助通信場景中一種基于展開信道的物理層密鑰生成方法

doi: 10.11999/JEIT240988 cstr: 32379.14.JEIT240988
基金項(xiàng)目: 國家自然科學(xué)基金( 62372244, 62172235),中興通訊產(chǎn)學(xué)研(2023ZTE08-02),國家重點(diǎn)研發(fā)計(jì)劃(2021YFB3101100),江蘇省重點(diǎn)研發(fā)計(jì)劃重點(diǎn)項(xiàng)目(BE2023025),南京郵電大學(xué)校級自然科學(xué)基金(NY222132),江蘇省研究生科研與實(shí)踐創(chuàng)新計(jì)劃項(xiàng)目(KYCX23_1057)
詳細(xì)信息
    作者簡介:

    楊立君:女,副教授,研究方向?yàn)闊o線網(wǎng)絡(luò)與信息安全

    陳子碩:男,碩士生,研究方向?yàn)槲锢韺用荑€生成

    陸海濤:男,高級工程師,研究方向?yàn)?5G/B5G/6G 通信安全技術(shù)

    郭林:男,講師,研究方向?yàn)镸IMO天線系統(tǒng)及安全技術(shù)

    通訊作者:

    郭林 guolin@njupt.edu.cn

  • 中圖分類號: TN92

An Unfolded Channel-based Physical Layer Key Generation Method For Reconfigurable Intelligent Surface-Assisted Communication Systems

Funds: The National Natural Science Foundation of China(62372244, 62172235), The ZTE Industry-university-Research Fund (2023ZTE08-02), The National Key Research and Development Program of China(2021YFB3101100), The Primary Research & Development Plan of Jiangsu Province (BE2023025), The Natural Science Foundation of Nanjing University of Posts and Telecommunications (NY222132), The Postgraduate Research & Practice Innovation Program of Jiangsu Province (KYCX23_1057)
  • 摘要: 在可重構(gòu)智能超表面(RIS)輔助的通信場景中,基站(BS)與RIS的位置通常保持相對靜止,而終端(UE)則處于移動狀態(tài)。兩段時(shí)變性不一致的信道級聯(lián)會引起信道信息熵的損失,從而造成物理層密鑰容量的劣化。針對該問題,該文首先從理論上分析了信道級聯(lián)對密鑰容量造成的劣化效應(yīng);為了緩解這一效應(yīng),該文提出一種基于展開信道的密鑰生成方法,通過展開信道估計(jì)和相移矩陣的分離,充分利用了展開信道的信息熵;最后對級聯(lián)信道劣化效應(yīng)進(jìn)行了仿真驗(yàn)證,并對所提出的方案進(jìn)行了性能評估。仿真結(jié)果顯示,與直接采用級聯(lián)信道作為密鑰源相比,該文所提方案在2 dB信噪比條件下,使密鑰生成率提升了72%。這一結(jié)果表明,該文方案能有效改善信道劣化效應(yīng),顯著提高密鑰生成效率。
  • 圖  1  系統(tǒng)模型

    圖  2  方案流程框圖

    圖  3  1個(gè)相干時(shí)間內(nèi)進(jìn)行的2階段信道估計(jì)的時(shí)間軸

    圖  4  基于PARAFAC分解的信道估計(jì)方法在1個(gè)相干時(shí)間內(nèi)的時(shí)間塊劃分

    圖  5  第1階段信道估計(jì)的時(shí)間軸

    圖  6  P輪信道估計(jì)所得接收信號經(jīng)過導(dǎo)頻逆運(yùn)算構(gòu)建的3維張量Z

    圖  7  展開信道與級聯(lián)信道密鑰容量對比

    圖  8  不同方案的密鑰生成率對比圖

    圖  9  以DCT去冗余時(shí)兩種方案密鑰不一致率對比

    圖  10  本文方案在3種去冗余方法下的密鑰不一致率

    圖  11  密鑰生成率隨RIS配置矩陣數(shù)量的變化圖

  • [1] ZHANG Junqing, DUONG T Q, MARSHALL A, et al. Key generation from wireless channels: A review[J]. IEEE Access, 2016, 4: 614–626. doi: 10.1109/ACCESS.2016.2521718.
    [2] XIA Enjun, HU Binjie, and SHEN Qiaoqiao. A survey of physical layer secret key generation enhanced by intelligent reflecting surface[J]. Electronics, 2024, 13(2): 258. doi: 10.3390/electronics13020258.
    [3] SONI A, UPADHYAY R, and KUMAR A. Low complexity preprocessing approach for wireless physical layer secret key extraction based on PCA[J]. Wireless Personal Communications, 2022, 125(3): 2865–2888. doi: 10.1007/s11277-022-09689-9.
    [4] YASUKAWA S, IWAI H, and SASAOKA H. Adaptive key generation in secret key agreement scheme based on the channel characteristics in OFDM[C]. 2008 International Symposium on Information Theory and Its Applications, Auckland, New Zealand, 2008: 1–6. doi: 10.1109/ISITA.2008.4895646.
    [5] LIU Zehui, GUO Min, and JU Yun. Physical layer key generation method based on SVD pre-processing[J]. Journal of Cyber Security and Mobility, 2022, 11(6): 777–794. doi: 10.13052/jcsm2245-1439.1163.
    [6] LI Guyue, HU Aiqun, PENG Linning, et al. The optimal preprocessing approach for secret key generation from OFDM channel measurements[C]. 2016 IEEE Globecom Workshops, Washington, USA, 2016: 1–6. doi: 10.1109/GLOCOMW.2016.7849063.
    [7] SHARMA R and UPADHYAY R. Physical layer secure key generation with nonlinear preprocessing of RSS for power constraint wireless networks[J]. International Journal of Communication Systems, 2021, 34(17): e4985. doi: 10.1002/dac.4985.
    [8] CHEN Yanru, CHEN Zhengyu, ZHANG Yuanyuan, et al. Physical layer key generation scheme for MIMO system based on feature fusion autoencoder[J]. IEEE Internet of Things Journal, 2023, 10(16): 14886–14895. doi: 10.1109/JIOT.2023.3288641.
    [9] WANG Tianqi, WEN Chaokai, WANG Hanqing, et al. Deep learning for wireless physical layer: Opportunities and challenges[J]. China Communications, 2017, 14(11): 92–111. doi: 10.1109/CC.2017.8233654.
    [10] 張?jiān)阼? 江浩. 智能超表面使能無人機(jī)高能效通信信道建模與傳輸機(jī)理分析[J]. 電子學(xué)報(bào), 2023, 51(10): 2623–2634. doi: 10.12263/DZXB.20221352.

    ZHANG Zaichen and JIANG Hao. Channel modeling and characteristics analysis for high energy- efficient RIS-assisted UAV communications[J]. Acta Electronica Sinica, 2023, 51(10): 2623–2634. doi: 10.12263/DZXB.20221352.
    [11] 唐杰, 文紅, 宋歡歡, 等. 基于智能反射表面輔助的MIMO無線通信密鑰快速生成[J]. 電子與信息學(xué)報(bào), 2022, 44(7): 2264–2272. doi: 10.11999/JEIT210442.

    TANG Jie, WEN Hong, SONG Huanhuan, et al. MIMO fast wireless secret key generation based on intelligent reflecting surface[J]. Journal of Electronics & Information Technology, 2022, 44(7): 2264–2272. doi: 10.11999/JEIT210442.
    [12] DE ARAúJO G T and DE ALMEIDA A L F. PARAFAC-based channel estimation for intelligent reflective surface assisted MIMO system[C]. The 2020 IEEE 11th Sensor Array and Multichannel Signal Processing Workshop, Hangzhou, China, 2020: 1–5. doi: 10.1109/SAM48682.2020.9104260.
    [13] DE ALMEIDA A L F, FAVIER G, DA COSTA J P J, et al. Overview of tensor decompositions with applications to communications[M]. COELHO R F, NASCIMENTO V H, DE QUEIROZ R L, et al. Signals and Images: Advances and Results in Speech, Estimation, Compression, Recognition, Filtering, and Processing. Boca Raton, USA: CRC-Press, 2016: 325–356. doi: 10.1201/b19385-17.
    [14] WEI Li, HUANG Chongwen, ALEXANDROPOULOS G C, et al. Parallel factor decomposition channel estimation in RIS-assisted multi-user MISO communication[C]. The 2020 IEEE 11th Sensor Array and Multichannel Signal Processing Workshop, Hangzhou, China, 2020: 1–5. doi: 10.1109/SAM48682.2020.9104305.
    [15] ZHANG Junqing, LI Guyue, MARSHALL A, et al. A new frontier for iot security emerging from three decades of key generation relying on wireless channels[J]. IEEE Access, 2020, 8: 138406–138446. doi: 10.1109/access.2020.3012006.
    [16] JIN Liang, HU Xiaoyan, SUN Xiaoli, et al. Native security scheme based on physical layer chain key for encryption and authentication[C]. 2021 IEEE Wireless Communications and Networking Conference Workshops, Nanjing, China, 2021: 1–7. doi: 10.1109/WCNCW49093.2021.9420012.
  • 加載中
圖(11)
計(jì)量
  • 文章訪問數(shù):  212
  • HTML全文瀏覽量:  119
  • PDF下載量:  47
  • 被引次數(shù): 0
出版歷程
  • 收稿日期:  2024-11-05
  • 修回日期:  2025-02-20
  • 網(wǎng)絡(luò)出版日期:  2025-02-24
  • 刊出日期:  2025-02-28

目錄

    /

    返回文章
    返回