一级黄色片免费播放|中国黄色视频播放片|日本三级a|可以直接考播黄片影视免费一级毛片

高級搜索

留言板

尊敬的讀者、作者、審稿人, 關于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復。謝謝您的支持!

姓名
郵箱
手機號碼
標題
留言內(nèi)容
驗證碼

可重構智能超表面輔助的非地面網(wǎng)絡安全傳輸與軌跡優(yōu)化

徐可馨 隆克平 陸陽 張海君

徐可馨, 隆克平, 陸陽, 張海君. 可重構智能超表面輔助的非地面網(wǎng)絡安全傳輸與軌跡優(yōu)化[J]. 電子與信息學報, 2025, 47(2): 296-304. doi: 10.11999/JEIT240981
引用本文: 徐可馨, 隆克平, 陸陽, 張海君. 可重構智能超表面輔助的非地面網(wǎng)絡安全傳輸與軌跡優(yōu)化[J]. 電子與信息學報, 2025, 47(2): 296-304. doi: 10.11999/JEIT240981
XU Kexin, LONG Keping, LU Yang, ZHANG Haijun. Joint Secure Transmission and Trajectory Optimization for Reconfigurable Intelligent Surface-aided Non-Terrestrial Networks[J]. Journal of Electronics & Information Technology, 2025, 47(2): 296-304. doi: 10.11999/JEIT240981
Citation: XU Kexin, LONG Keping, LU Yang, ZHANG Haijun. Joint Secure Transmission and Trajectory Optimization for Reconfigurable Intelligent Surface-aided Non-Terrestrial Networks[J]. Journal of Electronics & Information Technology, 2025, 47(2): 296-304. doi: 10.11999/JEIT240981

可重構智能超表面輔助的非地面網(wǎng)絡安全傳輸與軌跡優(yōu)化

doi: 10.11999/JEIT240981 cstr: 32379.14.JEIT240981
基金項目: 國家自然科學基金(U2441227, U22B2003),國防基礎科研計劃(JCKY2022110C010),中央高?;究蒲袠I(yè)務費專項資金(FRF-TP-22-002C2),通信抗干擾全國重點實驗室開放課題(IFN20230201)
詳細信息
    作者簡介:

    徐可馨:女,博士生,研究方向為非地面網(wǎng)絡、6G移動通信以及人工智能技術

    隆克平:男,教授,研究方向為6G移動通信、光無線通信

    陸陽:男,高級工程師(教授級),研究方向為電力通信技術

    張海君:男,教授,研究方向為6G移動通信、數(shù)字孿生、通感一體化技術以及衛(wèi)星通信

    通訊作者:

    隆克平 longkeping@ustb.edu.cn

  • 中圖分類號: TN929.5

Joint Secure Transmission and Trajectory Optimization for Reconfigurable Intelligent Surface-aided Non-Terrestrial Networks

Funds: The National Natural Science Foundation of China (U2441227, U22B2003), The Defense Industrial Technology Development Program (JCKY2022110C010), The Fundamental Research Funds for the Central Universities (FRF-TP-22-002C2), The National Key Laboratory of Wireless Communications Foundation (IFN20230201)
  • 摘要: 由于衛(wèi)星與地面用戶之間的直連受限于覆蓋范圍和鏈路質(zhì)量以及非地面網(wǎng)絡存在竊聽威脅等問題,該文考慮一個無人機中繼的非地面網(wǎng)絡安全傳輸系統(tǒng),引入可重構智能超表面(RIS),提高合法用戶信號質(zhì)量。同時為了兼顧系統(tǒng)高傳輸速率和高安全需求,該文設計衛(wèi)星到無人機的傳輸速率與地面合法用戶的安全速率的加權和作為系統(tǒng)效用,并以此作為優(yōu)化目標,進而提出一種基于雙層雙延遲深度確定性策略梯度(TTD3)的聯(lián)合衛(wèi)星與無人機波束成形、RIS相移矩陣以及無人機軌跡優(yōu)化方法,通過采用雙層深度強化學習結構解耦波束成形和軌跡優(yōu)化兩個子問題,實現(xiàn)系統(tǒng)效用最大化。仿真結果驗證了所提方法在動態(tài)非地面網(wǎng)絡環(huán)境下的有效性,同時在高安全需求下,通過對比不同算法、不同配置方案以及不同RIS元件數(shù)量下的仿真結果,證明了該文所提方法能夠提升系統(tǒng)安全傳輸性能。
  • 圖  1  RIS輔助的NTNs下行傳輸系統(tǒng)

    圖  2  不同算法下的所提方案訓練過程中獎勵曲線變化情況

    圖  3  不同方案下的UAV軌跡優(yōu)化情況

    圖  4  不同方案下的用戶保密速率性能對比

    圖  5  不同RIS反射元件個數(shù)下不同算法的用戶保密速率性能對比

    1  基于TTD3算法的NTNs安全傳輸與軌跡優(yōu)化流程

     初始化1:TTD3中的第1層TD3的6個神經(jīng)網(wǎng)絡參數(shù)以及第2層
     TD3的6個神經(jīng)網(wǎng)絡參數(shù);
     初始化2:軟更新因子$\psi $,每次迭代步數(shù)${N_{{\mathrm{step}}}}$,迭代次數(shù)
     Eposide,經(jīng)驗存放空間${{B}}$,更新間隔$C$,批次大小$v$;
     (1) for ${\mathrm{step}} = 1$ to Eposide do
     (2)   初始化UAV的位置、用戶的位置以及信道狀態(tài);
     (3)  for ${\mathrm{step}} = 1$ to ${N_{{\mathrm{step}}}}$ do
     (4)    獲得$ {{\boldsymbol{h}}_{\rm{S,U}}},{{\mathrm{SINR}}_{\rm{S,U}}},{{\boldsymbol{h}}_{{\rm U},i}} + {{\boldsymbol{h}}_{{\rm R},i}}{\boldsymbol{\varTheta}} {h_{{\mathrm{U,R}}}} $作為${{\boldsymbol{s}}_1}$, $ {\boldsymbol{q}} $作
          為${{\boldsymbol{s}}_2}$;
     (5)   根據(jù)式(21)產(chǎn)生動作${{\boldsymbol{a}}_1}$和${{\boldsymbol{a}}_2}$;
     (6)   執(zhí)行相應的動作獲得相應的即時獎勵$ {r_1} $和${r_2}$,并觀察
         新狀態(tài)${\boldsymbol{s}}_1^{'}$和${\boldsymbol{s}}_2^{'}$;
     (7)  將狀態(tài)轉(zhuǎn)移元組$({{\boldsymbol{s}}_1},{{\boldsymbol{a}}_1},{r_1},{\boldsymbol{s}}_1^{'})$和
         $ ({{\boldsymbol{s}}_2},{{\boldsymbol{a}}_2},{r_2},{{\boldsymbol{s}}_2}^{'}) $存儲在$B$中;
     (8)  隨機抽取$v$條經(jīng)驗進行訓練;
     (9)   根據(jù)式(27)獲得目標值;
     (10)   根據(jù)策略延遲更新機制更新Actor網(wǎng)絡和Critic網(wǎng)絡參數(shù);
     (11)   以式(26)對目標Actor網(wǎng)絡和Critic網(wǎng)絡參數(shù)更新;
     (12) end for
     (13) end for
    下載: 導出CSV
  • [1] AZARI M M, SOLANKI S, CHATZINOTAS S, et al. Evolution of non-terrestrial networks from 5G to 6G: A survey[J]. IEEE Communications Surveys & Tutorials, 2022, 24(4): 2633–2672. doi: 10.1109/COMST.2022.3199901.
    [2] ZHOU Di, SHENG Min, LI Jiandong, et al. Aerospace integrated networks innovation for empowering 6G: A survey and future challenges[J]. IEEE Communications Surveys & Tutorials, 2023, 25(2): 975–1019. doi: 10.1109/COMST.2023.3245614.
    [3] JIANG Bin, YAN Yingchun, YOU Li, et al. Robust secure transmission for satellite communications[J]. IEEE Transactions on Aerospace and Electronic Systems, 2023, 59(2): 1598–1612. doi: 10.1109/TAES.2022.3203027.
    [4] LI Yabo, ZHANG Haijun, LONG Keping, et al. Exploring sum rate maximization in UAV-based Multi-IRS networks: IRS association, UAV altitude, and phase shift design[J]. IEEE Transactions on Communications, 2022, 70(11): 7764–7774. doi: 10.1109/TCOMM.2022.3206884.
    [5] KHAN W U, LAGUNAS E, MAHMOOD A, et al. RIS-assisted energy-efficient LEO satellite communications with NOMA[J]. IEEE Transactions on Green Communications and Networking, 2024, 8(2): 780–790. doi: 10.1109/TGCN.2023.3344102.
    [6] ZHANG Haijun, HUANG Miaolin, ZHOU Huan, et al. Capacity maximization in RIS-UAV networks: A DDQN-based trajectory and phase shift optimization approach[J]. IEEE Transactions on Wireless Communications, 2023, 22(4): 2583–2591. doi: 10.1109/TWC.2022.3212830.
    [7] KHAN W U, LAGUNAS E, ALI Z, et al. Opportunities for physical layer security in UAV communication enhanced with intelligent reflective surfaces[J]. IEEE Wireless Communications, 2022, 29(6): 22–28. doi: 10.1109/MWC.001.2200125.
    [8] LI Jingyi, XU Sai, LIU Jiajia, et al. Reconfigurable intelligent surface enhanced secure aerial-ground communication[J]. IEEE Transactions on Communications, 2021, 69(9): 6185–6197. doi: 10.1109/TCOMM.2021.3086517.
    [9] GUO Xufeng, CHEN Yuanbin, and WANG Ying. Learning-based robust and secure transmission for reconfigurable intelligent surface aided millimeter wave UAV communications[J]. IEEE Wireless Communications Letters, 2021, 10(8): 1795–1799. doi: 10.1109/LWC.2021.3081464.
    [10] YANG Helin, LIU Shuai, XIAO Liang, et al. Learning-based reliable and secure transmission for UAV-RIS-assisted communication systems[J]. IEEE Transactions on Wireless Communications, 2024, 23(7): 6954–6967. doi: 10.1109/TWC.2023.3336535.
    [11] 趙柏, 林敏, 肖圣杰, 等. 基于速率分割的可重構智能表面輔助星地融合網(wǎng)絡魯棒安全傳輸方案[J]. 通信學報, 2023, 44(12): 50–60. doi: 10.11959/j.issn.1000-436x.2023221.

    ZHAO Bai, LIN Min, XIAO Shengjie, et al. Rate splitting based robust secure transmission scheme in RIS-assisted satellite-terrestrial integrated network[J]. Journal on Communications, 2023, 44(12): 50–60. doi: 10.11959/j.issn.1000-436x.2023221.
    [12] ZHAO Bai, LIN Min, CHENG Ming, et al. Robust downlink transmission design in IRS-assisted cognitive satellite and terrestrial networks[J]. IEEE Journal on Selected Areas in Communications, 2023, 41(8): 2514–2529. doi: 10.1109/JSAC.2023.3288234.
    [13] NGO Q T, PHAN K T, MAHMOOD A, et al. Hybrid IRS-assisted secure satellite downlink communications: A fast deep reinforcement learning approach[J]. IEEE Transactions on Emerging Topics in Computational Intelligence, 2024, 8(4): 2858–2869. doi: 10.1109/TETCI.2024.3378605.
    [14] LI Huifang, LI Jing, LIU Meng, et al. UAV-assisted secure communication for coordinated satellite-terrestrial networks[J]. IEEE Communications Letters, 2023, 27(7): 1709–1713. doi: 10.1109/LCOMM.2023.3267119.
    [15] ZHOU Gui, PAN Chunhua, REN Hong, et al. Stochastic learning-based robust beamforming design for RIS-aided millimeter-wave systems in the presence of random blockages[J]. IEEE Transactions on Vehicular Technology, 2021, 70(1): 1057–1061. doi: 10.1109/TVT.2021.3049257.
    [16] LIN Zhi, NIU Hehao, AN Kang, et al. Refracting RIS-aided hybrid satellite-terrestrial relay networks: Joint beamforming design and optimization[J]. IEEE Transactions on Aerospace and Electronic Systems, 2022, 58(4): 3717–3724. doi: 10.1109/TAES.2022.3155711.
  • 加載中
圖(5) / 表(1)
計量
  • 文章訪問數(shù):  323
  • HTML全文瀏覽量:  144
  • PDF下載量:  77
  • 被引次數(shù): 0
出版歷程
  • 收稿日期:  2024-11-01
  • 修回日期:  2025-02-24
  • 網(wǎng)絡出版日期:  2025-02-25
  • 刊出日期:  2025-02-28

目錄

    /

    返回文章
    返回