一级黄色片免费播放|中国黄色视频播放片|日本三级a|可以直接考播黄片影视免费一级毛片

高級搜索

留言板

尊敬的讀者、作者、審稿人, 關于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復。謝謝您的支持!

姓名
郵箱
手機號碼
標題
留言內容
驗證碼

基于期望傳播的差分空間調制信號檢測算法

邵華 王淳 曹荻非 李衛(wèi) 張海君

邵華, 王淳, 曹荻非, 李衛(wèi), 張海君. 基于期望傳播的差分空間調制信號檢測算法[J]. 電子與信息學報, 2025, 47(3): 590-599. doi: 10.11999/JEIT240840
引用本文: 邵華, 王淳, 曹荻非, 李衛(wèi), 張海君. 基于期望傳播的差分空間調制信號檢測算法[J]. 電子與信息學報, 2025, 47(3): 590-599. doi: 10.11999/JEIT240840
SHAO Hua, WANG Chun, CAO Difei, LI Wei, ZHANG Haijun. Expectation Propagation-based Signal Detection for Differential Spatial Modulation[J]. Journal of Electronics & Information Technology, 2025, 47(3): 590-599. doi: 10.11999/JEIT240840
Citation: SHAO Hua, WANG Chun, CAO Difei, LI Wei, ZHANG Haijun. Expectation Propagation-based Signal Detection for Differential Spatial Modulation[J]. Journal of Electronics & Information Technology, 2025, 47(3): 590-599. doi: 10.11999/JEIT240840

基于期望傳播的差分空間調制信號檢測算法

doi: 10.11999/JEIT240840 cstr: 32379.14.JEIT240840
基金項目: 雄安科技創(chuàng)新專項(2022XAGG0114),國家自然基金(62101030, 62102021)
詳細信息
    作者簡介:

    邵華:男,講師,研究方向為無線通信物理層算法,智能通信等

    王淳:女,碩士生,研究方向為人工智能,智能系統(tǒng),大模型語義通信等

    曹荻非:男,博士生,研究方向為物聯(lián)網(wǎng),高可靠通信

    李衛(wèi):女,教授,研究方向為物聯(lián)網(wǎng)通信

    張海君:男,教授,研究方向為無線資源管控、高可靠通信網(wǎng)絡

    通訊作者:

    邵華 shaohua@ustb.edu.cn

  • 中圖分類號: TN925

Expectation Propagation-based Signal Detection for Differential Spatial Modulation

Funds: Science, Technology &Innovation Project of Xiongan New Area (2022XAGG0114), The National Natural Science Foundation of China (62101030, 62102021)
  • 摘要: 設計高效且復雜度低的檢測算法是差分空間調制(DSM)系統(tǒng)中的一大關鍵問題。該文提出了一種多相移鍵控差分空間調制系統(tǒng)的貝葉斯期望傳播(EP)信號檢測方法,將DSM的信號檢測問題轉化為待檢測信號的參數(shù)估計問題,通過迭代估計先驗和后驗分布的參數(shù),獲得檢測信號的估計值。該算法將原始的信號檢測問題分解為天線域信息和星座域信息兩部分,其中天線域檢測通過期望傳播算法迭代求取,星座域比特通過迭代過程中最優(yōu)解調獲得,降低了算法復雜度。進一步地,該文針對傳統(tǒng)期望傳播方法中噪聲參數(shù)進行了擴展,在迭代過程中不斷調整噪聲項的矩估計,獲得了比傳統(tǒng)方案更好的性能。該文對所提近最優(yōu)解調方案進行了仿真驗證,結果表明所提方案性能優(yōu)于傳統(tǒng)線性檢測方案;所提的基于期望傳播的噪聲修正方案性能優(yōu)于傳統(tǒng)恒值方案;在不同天線配置和調制階數(shù)情況下,所提方案均能夠快速收斂。
  • 圖  1  3×3 MIMO下不同算法性能對比

    圖  2  4×4 MIMO下不同算法性能對

    圖  3  5×5 MIMO下不同算法性能對比

    圖  4  不同調制階數(shù)下算法性能對比

    圖  5  不同迭代次數(shù)對于算法性能影響

    圖  6  噪聲項特殊處理的誤碼率性能對比

    1  基于期望傳播的DSM信號檢測流程

     輸入:${{\boldsymbol{Y}}_t}$, ${{\boldsymbol{Y}}_{t - 1}}$, $P(a),a \in \{ 1,2, \cdots ,A\} $, $\sigma _n^2$
     輸出:信息比特的對數(shù)似然比
     (1) For $l = 1:T$
     (2)  根據(jù)式(23)更新噪聲分布參數(shù)
     (3)  根據(jù)式(15)、式(24)、式(25)計算${{\boldsymbol{s}}_t}$后驗概率分布$q({{\boldsymbol{s}}_t})$及
        參數(shù)
     (4)   For $a = 1:A$
     (5)    根據(jù)${\boldsymbol{P}}_t^l(a)$和式(18)計算最優(yōu)的信號域符號${\boldsymbol{S}}_a^l$
     (6)    將${\bar {\boldsymbol{\mu}} _s}$逆向量化為$\bar {\boldsymbol{S}}_t^l$,根據(jù)式(17)計算每個候選圖樣的
          歐式距離${M_l}(a)$
     (7)   End
     (8)  根據(jù)式(19)將${M_l}(a)$轉化為歸一化的天線圖樣概率分布
        $P_b^l(a)$
     (9)  根據(jù)式(21)更新先驗分布參數(shù)${\boldsymbol{\mu }}_{\boldsymbol{s}}^l$, ${\boldsymbol{\varSigma}} _{\boldsymbol{s}}^l$,作為下一輪迭代輸入。
     (10) End
     (11) 輸出步驟(6)中最大${P_b}(a)$對應的天線圖樣
     (12) 輸出最大概率${P_b}(a)$的對應的信號域符號${{\boldsymbol{S}}_a}$
     (13) 根據(jù)式(26)計算天線比特的${{\rm{LLR}}_{{\mathrm{ant}}}}$
     (14) 根據(jù)式(27)計算星座比特的${{\rm{LLR}}_{{\mathrm{sig}}}}$
     (15) 輸出DSM的所有比特的${\bf{LLR}}$(式(28))
    下載: 導出CSV
  • [1] ZHANG Zhenyu, GONG Caihong, DONG Yuanyuan, et al. Expectation propagation aided signal detection for uplink massive generalized spatial modulation MIMO systems[J]. IEEE Transactions on Wireless Communications, 2022, 21(3): 2006–2018. doi: 10.1109/TWC.2021.3108852.
    [2] MESLEH R Y, HAAS H, SINANOVIC S, et al. Spatial modulation[J]. IEEE Transactions on Vehicular Technology, 2008, 57(4): 2228–2241. doi: 10.1109/TVT.2007.912136.
    [3] JEGANATHAN J, GHRAYEB A, and SZCZECINSKI L. Spatial modulation: Optimal detection and performance analysis[J]. IEEE Communications Letters, 2008, 12(8): 545–547. doi: 10.1109/LCOMM.2008.080739.
    [4] GUO Shuaishuai and QU Kaiqian. Beamspace modulation for near field capacity improvement in XL-MIMO communications[J]. IEEE Wireless Communications Letters, 2023, 12(8): 1434–1438. doi: 10.1109/LWC.2023.3277666.
    [5] HE Longzhuang, WANG Jintao, and SONG Jian. Spatial modulation for more spatial multiplexing: RF-chain-limited generalized spatial modulation aided MM-wave MIMO with hybrid precoding[J]. IEEE Transactions on Communications, 2018, 66(3): 986–998. doi: 10.1109/TCOMM.2017.2773543.
    [6] MESLEH R, IKKI S S, and AGGOUNE H M. Quadrature spatial modulation[J]. IEEE Transactions on Vehicular Technology, 2015, 64(6): 2738–2742. doi: 10.1109/TVT.2014.2344036.
    [7] YOUNIS A, MESLEH R, and HAAS H. Quadrature spatial modulation performance over Nakagami-m fading channels[J]. IEEE Transactions on Vehicular Technology, 2016, 65(12): 10227–10231. doi: 10.1109/TVT.2015.2478841.
    [8] ABU-HUDROUSS A M, EL ASTAL M T O, AL HABBASH A H, et al. Signed quadrature spatial modulation for MIMO systems[J]. IEEE Transactions on Vehicular Technology, 2020, 69(3): 2740–2746. doi: 10.1109/TVT.2020.2964118.
    [9] ELFADIL H, MALEKI M, and BAHRAMI H R. A novel low-complexity adaptive bit mapping scheme for spatial modulation[J]. IEEE Transactions on Vehicular Technology, 2018, 67(4): 3674–3678. doi: 10.1109/TVT.2017.2780900.
    [10] LIU Chaowen, YANG Lieliang, and WANG Wenjie. Transmitter-precoding-aided spatial modulation achieving both transmit and receive diversity[J]. IEEE Transactions on Vehicular Technology, 2018, 67(2): 1375–1388. doi: 10.1109/TVT.2017.2757403.
    [11] WANG Leijun, LIANG Chulong, YANG Zhihua, et al. Two-layer coded spatial modulation with block Markov superposition transmission[J]. IEEE Transactions on Communications, 2016, 64(2): 643–653. doi: 10.1109/TCOMM.2015.2506170.
    [12] AN Bo, WU Liang, ZHANG Zaichen, et al. Multi-user successive-coded spatial modulation scheme based on beamforming[J]. IEEE Transactions on Vehicular Technology, 2022, 71(10): 10485–10498. doi: 10.1109/TVT.2022.3183084.
    [13] YANG Shuaixin, XIAO Yue, CHEN Jiangong, et al. Integrated polarization and spatial modulation[J]. IEEE Transactions on Communications, 2023, 71(1): 527–539. doi: 10.1109/TCOMM.2022.3224016.
    [14] YOUNIS A, SERAFIMOVSKI N, MESLEH R, et al. Generalised spatial modulation[C]. 2010 Conference Record of the Forty Fourth Asilomar Conference on Signals, Systems and Computers, Pacific Grove, USA, 2010: 1498–1502. doi: 10.1109/ACSSC.2010.5757786.
    [15] MESLEH R, ALTHUNIBAT S, and YOUNIS A. Differential quadrature spatial modulation[J]. IEEE Transactions on Communications, 2017, 65(9): 3810–3817. doi: 10.1109/TCOMM.2017.2712720.
    [16] TRAN T Q, SUGIURA S, and LEE K. Ordering- and partitioning-aided sphere decoding for generalized spatial modulation[J]. IEEE Transactions on Vehicular Technology, 2018, 67(10): 10087–10091. doi: 10.1109/TVT.2018.2859597.
    [17] RAJASHEKAR R, Yang Lieliang, HARI K V S, et al. L. Hanzo. Transmit antenna subset selection in generalized spatial modulation systems[J]. IEEE Transactions on Vehicular Technology, 2019, 68(2): 1979–1983. doi: 10.1109/TVT.2018.2889024.
    [18] LAKSHMI NARASIMHAN T, RAVITEJA P, and CHOCKALINGAM A. Generalized spatial modulation in large-scale multiuser MIMO systems[J]. IEEE Transactions on Wireless Communications, 2015, 14(7): 3764–3779. doi: 10.1109/TWC.2015.2411651.
    [19] AN Jiancheng, XU Chao, LIU Yusha, et al. The achievable rate analysis of generalized quadrature spatial modulation and a pair of low-complexity detectors[J]. IEEE Transactions on Vehicular Technology, 2022, 71(5): 5203–5215. doi: 10.1109/TVT.2022.3155244.
    [20] LIU Peng, BLUMENSTEIN J, PEROVI? N S, et al. Performance of generalized spatial modulation MIMO over measured 60GHz indoor channels[J]. IEEE Transactions on Communications, 2018, 66(1): 133–148. doi: 10.1109/TCOMM.2017.2754280.
    [21] XIANG Luping, LIU Yusha, YANG Lieliang, et al. Low complexity detection for spatial modulation aided sparse code division multiple access[J]. IEEE Transactions on Vehicular Technology, 2021, 70(12): 12858–12871. doi: 10.1109/TVT.2021.3121128.
    [22] LU Lu, LI G Y, LEE SWINDLEHURST A, et al. An overview of massive MIMO: Benefits and challenges[J]. IEEE Journal of Selected Topics in Signal Processing, 2014, 8(5): 742–758. doi: 10.1109/JSTSP.2014.2317671.
    [23] BIAN Yuyang, CHENG Xiang, WEN Miaowen, et al. Differential spatial modulation[J]. IEEE Transactions on Vehicular Technology, 2015, 64(7): 3262–3268. doi: 10.1109/TVT.2014.2348791.
    [24] WEN Miaowen, CHENG Xiang, BIAN Yuyang, et al. A low-complexity near-ML differential spatial modulation detector[J]. IEEE Signal Processing Letters, 2015, 22(11): 1834–1838. doi: 10.1109/LSP.2015.2425042.
    [25] MARTIN P A. Differential spatial modulation for APSK in time-varying fading channels[J]. IEEE Communications Letters, 2015, 19(7): 1261–1264. doi: 10.1109/LCOMM.2015.2426172.
    [26] WEI R Y and LIN T Y. Low-complexity differential spatial modulation[J]. IEEE Wireless Communications Letters, 2019, 8(2): 356–359. doi: 10.1109/LWC.2018.2872990.
    [27] JOSE D and SAMEER S M. A low complexity detector with near-ML performance for generalized differential spatial modulation[C]. 2020 International Conference on Signal Processing and Communications, Bangalore, India, 2020: 1–5. doi: 10.1109/SPCOM50965.2020.9179552.
    [28] WEI R Y and CHANG Chenwei. A low-complexity soft-output detector for differential spatial modulation[J]. IEEE Wireless Communications Letters, 2022, 11(5): 1077–1081. doi: 10.1109/LWC.2022.3156889.
    [29] XIU Haotian, YANG Lin, YU Daizhong, et al. A DFDD based detector for space-time block coded differential spatial modulation under time-selective channels[J]. IEEE Communications Letters, 2022, 26(2): 359–363. doi: 10.1109/LCOMM.2021.3132697.
    [30] YANG Yukun, HAI Han, JIANG XueQin, et al. Low-complexity detectors for space-time block coded differential spatial modulation[J]. IEEE Transactions on Vehicular Technology, 2024, 73(8): 12231–12236. doi: 10.1109/TVT.2024.3381863.
    [31] SHAMASUNDAR B and CHOCKALINGAM A. A DNN architecture for the detection of generalized spatial modulation signals[J]. IEEE Communications Letters, 2020, 24(12): 2770–2774. doi: 10.1109/LCOMM.2020.3018260.
    [32] HE Le, FAN Lisheng, LEI Xianfu, et al. Learning-based MIMO detection with dynamic spatial modulation[J]. IEEE Transactions on Cognitive Communications and Networking, 2023, 9(6): 1489–1502. doi: 10.1109/TCCN.2023.3306853.
    [33] FENG Xinyu, EL-HAJJA M, XU Chao, et al. Deep learning-based soft iterative-detection of channel-coded compressed sensing-aided multi-dimensional index modulation[J]. IEEE Transactions on Vehicular Technology, 2023, 72(6): 7530–7544. doi: 10.1109/TVT.2023.3241440.
    [34] WEI R Y, CHEN S L, LIN Y H, et al. Bandwidth-efficient generalized differential spatial modulation[J]. IEEE Transactions on Vehicular Technology, 2023, 72(1): 601–610. doi: 10.1109/TVT.2022.3202912.
    [35] XIU Haotian, YU Daizhong, GAO Peiyuan, et al. An enhanced system model for differential spatial modulation system under fast fading channels and a corresponding DFDD based low- complexity detector[J]. IEEE Transactions on Vehicular Technology, 2024, 73(2): 2227–2235. doi: 10.1109/TVT.2023.3316275.
    [36] MURILLO-FUENTES J J, SANTOS I, ARADILLAS J C, et al. A low-complexity double EP-based detector for iterative detection and decoding in MIMO[J]. IEEE Transactions on Communications, 2021, 69(3): 1538–1547. doi: 10.1109/TCOMM.2020.3043771.
  • 加載中
圖(6) / 表(1)
計量
  • 文章訪問數(shù):  167
  • HTML全文瀏覽量:  87
  • PDF下載量:  27
  • 被引次數(shù): 0
出版歷程
  • 收稿日期:  2024-10-08
  • 修回日期:  2025-03-04
  • 網(wǎng)絡出版日期:  2025-03-14
  • 刊出日期:  2025-03-01

目錄

    /

    返回文章
    返回