一级黄色片免费播放|中国黄色视频播放片|日本三级a|可以直接考播黄片影视免费一级毛片

高級搜索

留言板

尊敬的讀者、作者、審稿人, 關于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復。謝謝您的支持!

姓名
郵箱
手機號碼
標題
留言內容
驗證碼

可重構智能超表面使能的協(xié)作無線攜能同傳-非正交多址接入系統(tǒng)安全傳輸方案

季薇 劉子卿 李飛 李汀 梁彥 宋云超

季薇, 劉子卿, 李飛, 李汀, 梁彥, 宋云超. 可重構智能超表面使能的協(xié)作無線攜能同傳-非正交多址接入系統(tǒng)安全傳輸方案[J]. 電子與信息學報, 2025, 47(2): 305-314. doi: 10.11999/JEIT240822
引用本文: 季薇, 劉子卿, 李飛, 李汀, 梁彥, 宋云超. 可重構智能超表面使能的協(xié)作無線攜能同傳-非正交多址接入系統(tǒng)安全傳輸方案[J]. 電子與信息學報, 2025, 47(2): 305-314. doi: 10.11999/JEIT240822
JI Wei, LIU Ziqing, LI Fei, LI Ting, LIANG Yan, SONG Yunchao. Secure Transmission Scheme for Reconfigurable Intelligent Surface-enabled Cooperative Simultaneous Wireless Information and Power Transfer Non-Orthogonal Multiple Access System[J]. Journal of Electronics & Information Technology, 2025, 47(2): 305-314. doi: 10.11999/JEIT240822
Citation: JI Wei, LIU Ziqing, LI Fei, LI Ting, LIANG Yan, SONG Yunchao. Secure Transmission Scheme for Reconfigurable Intelligent Surface-enabled Cooperative Simultaneous Wireless Information and Power Transfer Non-Orthogonal Multiple Access System[J]. Journal of Electronics & Information Technology, 2025, 47(2): 305-314. doi: 10.11999/JEIT240822

可重構智能超表面使能的協(xié)作無線攜能同傳-非正交多址接入系統(tǒng)安全傳輸方案

doi: 10.11999/JEIT240822 cstr: 32379.14.JEIT240822
基金項目: 國家自然科學基金(61871238, 62271265)
詳細信息
    作者簡介:

    季薇:女,博士,教授,研究方向為無線通信與通信信號處理、智能信號處理等

    劉子卿:男,碩士生,研究方向為RIS輔助的SWIPT通信系統(tǒng)

    李飛:女,博士,教授,研究方向為量子智能計算、群智能和無線通信中的信號處理技術

    李?。耗?,博士,副教授,研究方向為MIMO 技術、3D MIMO 技術、協(xié)作通信等

    梁彥:女,博士,副教授,研究方向為無線通信與移動通信

    宋云超:男,博士,副教授,研究方向為通信信號處理

    通訊作者:

    季薇 jiwei@njupt.edu.cn

  • 中圖分類號: TN92

Secure Transmission Scheme for Reconfigurable Intelligent Surface-enabled Cooperative Simultaneous Wireless Information and Power Transfer Non-Orthogonal Multiple Access System

Funds: The National Natural Science Foundation of China (61871238, 62271265)
  • 摘要: 可重構智能超表面(RIS)因能提供額外的無源波束增益被視為一項頗具前景的技術??紤]到未來大型物聯(lián)網(wǎng)中不同用戶服務需求的多樣性及信息傳輸?shù)陌踩裕撐拿嫦騾f(xié)作無線攜能同傳-非正交多址接入(SWIPT-NOMA)系統(tǒng),提出一種RIS使能的安全傳輸方案。通過合理部署RIS的位置,將其同時作用于直接傳輸階段和協(xié)作傳輸階段。在滿足非正交多址接入(NOMA)弱用戶信息速率需求、NOMA強用戶能量收集需求和基站最小發(fā)射功率的條件下,通過聯(lián)合優(yōu)化基站的有源波束成形、RIS的相移矩陣、強用戶的功率分割系數(shù)等來最大化強用戶的保密速率。為解決所提的多變量耦合的非凸優(yōu)化問題,該文基于交替迭代優(yōu)化算法,對基站的有源波束成形、直接傳輸階段的RIS無源波束相移矩陣、協(xié)作傳輸階段的RIS有源波束相移矩陣以及強用戶的功率分割系數(shù)等進行了多次交替迭代優(yōu)化,直至算法收斂。仿真結果驗證了該文算法的收斂性,且與其它基準方案相比,所提方案可進一步提高強用戶的保密速率。
  • 圖  1  系統(tǒng)模型

    圖  2  強用戶U2的工作模式

    圖  3  RIS元件個數(shù)與算法迭代收斂圖

    圖  4  基站天線數(shù)和保密速率關系圖

    圖  5  RIS元件數(shù)和保密速率關系圖

    1  基站有源波束成形子問題求解算法

     令$ i = 0 $,初始化可行解$ {\boldsymbol{W}}_1^{(i)},\;{\boldsymbol{W}}_2^{(i)} $,輔助變量$ x_1^{(i)} $
      for 交替更新求解
       已知$ {\boldsymbol{W}}_1^{(i)},\;{\boldsymbol{W}}_2^{(i)} $,計算$ {t^{(i + 1)}} $
       已知$ {\boldsymbol{W}}_1^{(i)},\;{\boldsymbol{W}}_2^{(i)},\;x_1^{(i)} $, 計算$ {a^{(i + 1)}} $
       已知$ {t^{(i + 1)}},{a^{(i + 1)}} $,求解問題P2,獲得${\boldsymbol{W}}_1^{(i + 1)},\;{\boldsymbol{W}}_2^{(i + 1)} $,
       $ x_1^{(i + 1)} $
        更新$ i = i + 1 $
      end for:收斂
     輸出基站有源波束成形矩陣$ {\boldsymbol{W}}_1^{(i)},\;{\boldsymbol{W}}_2^{(i)} $,輔助變量$ x_1^{(i)} $
    下載: 導出CSV

    2  直接傳輸階段RIS無源波束成形優(yōu)化子問題求解算法

     令$ i = 0 $,初始化可行解$ {\boldsymbol{Q}}_1^{(i)} $,輔助變量$ x_2^{(i)} $
      for 交替更新求解
       已知$ {\boldsymbol{Q}}_1^{(i)} $,計算$ {z^{(i + 1)}} $
       已知$ {\boldsymbol{Q}}_1^{(i)},\;x_2^{(i)} $, 計算$ {b^{(i + 1)}} $
       已知$ {z^{(i + 1)}},{b^{(i + 1)}} $,求解問題P4,獲得$ {\boldsymbol{Q}}_1^{(i + 1)},x_2^{(i + 1)} $
       更新$ i = i + 1 $
      end for:收斂
     輸出基站有源波束成形矩陣$ {\boldsymbol{Q}}_1^{(i)} $,輔助變量$ x_2^{(i)} $
    下載: 導出CSV

    3  基于交替迭代的整體算法

     令$ i = 0 $,初始化可行解$ {\boldsymbol{w}}_1^{(i)},{\boldsymbol{w}}_2^{(i)},{\boldsymbol{Q}}_1^{(i)},{\boldsymbol{Q}}_2^{(i)},{\rho ^{(i)}} $
     for 交替更新求解$ {{\boldsymbol{w}}_1},{{\boldsymbol{w}}_2},{{\boldsymbol{Q}}_1},{{\boldsymbol{Q}}_2},\rho $
      已知$ {\boldsymbol{Q}}_1^{(i)},{\boldsymbol{Q}}_2^{(i)},{\rho ^{(i)}} $,求解問題P2,獲得$ {\boldsymbol{w}}_1^{(i + 1)},{\boldsymbol{w}}_2^{(i + 1)} $
      已知$ {\boldsymbol{w}}_1^{(i + 1)},{\boldsymbol{w}}_2^{(i + 1)},{\boldsymbol{Q}}_2^{(i)},{\rho ^{(i)}} $,求解問題P4,獲得$ {\boldsymbol{Q}}_1^{(i + 1)} $
      已知$ {\boldsymbol{w}}_1^{(i + 1)},{\boldsymbol{w}}_2^{(i + 1)},{\boldsymbol{Q}}_1^{(i + 1)},{\rho ^{(i)}} $,求解問題P6,獲得
      $ {\boldsymbol{Q}}_2^{(i + 1)} $
      已知$ {\boldsymbol{w}}_1^{(i + 1)},{\boldsymbol{w}}_2^{(i + 1)},{\boldsymbol{Q}}_1^{(i + 1)},{\boldsymbol{Q}}_2^{(i + 1)} $,求解問題P8,獲得
      $ {\rho ^{(i + 1)}} $
      更新$ i = i + 1 $
     end for:收斂
    下載: 導出CSV
  • [1] PRASAD R, MANTRI D S, PANDEY S K, et al. 6G Connectivity-Systems, Technologies, and Applications: Digitalization of New Technologies, 6G and Evolution[M]. Aalborg: River Publishers, 2024: 139–156.
    [2] SARKAR D, YOGITA, YADAV S S, et al. A comprehensive survey on IRS-assisted NOMA-based 6G wireless network: Design perspectives, challenges and future directions[J]. IEEE Transactions on Network and Service Management, 2024, 21(2): 2539–2562. doi: 10.1109/TNSM.2023.3348138.
    [3] AL-DWEIK A, ALSUSA E, DOBRE O A, et al. Multi-symbol rate NOMA for improving connectivity in 6G communications networks[J]. IEEE Communications Magazine, 2024, 62(7): 118–123. doi: 10.1109/MCOM.001.2300351.
    [4] DINH P, ARFAOUI M A, SHARAFEDDINE S, et al. A low-complexity framework for joint user pairing and power control for cooperative NOMA in 5G and beyond cellular networks[J]. IEEE Transactions on Communications, 2020, 68(11): 6737–6749. doi: 10.1109/TCOMM.2020.3009262.
    [5] BENBUK A A, KOUZAYHA N, COSTANTINE J, et al. Charging and wake-up of IoT devices using harvested RF energy with near-zero power consumption[J]. IEEE Internet of Things Magazine, 2023, 6(1): 162–167. doi: 10.1109/IOTM.001.2200202.
    [6] SHERAZI H H R, ZORBAS D, and O’FLYNN B. A comprehensive survey on RF energy harvesting: Applications and performance determinants[J]. Sensors, 2022, 22(8): 2990. doi: 10.3390/s22082990.
    [7] JAMEEL F, WYNE S, KADDOUM G, et al. A comprehensive survey on cooperative relaying and jamming strategies for physical layer security[J]. IEEE Communications Surveys & Tutorials, 2019, 21(3): 2734–2771. doi: 10.1109/COMST.2018.2865607.
    [8] 盧漢成, 王亞正, 趙丹, 等. 智能反射表面輔助的無線通信系統(tǒng)的物理層安全綜述[J]. 通信學報, 2022, 43(2): 171–184. doi: 10.11959/j.issn.1000?436x.2022025.

    LU Hancheng, WANG Yazheng, ZHAO Dan, et al. Survey of physical layer security of intelligent reflecting surface-assisted wireless communication systems[J]. Journal on Communications, 2022, 43(2): 171–184. doi: 10.11959/j.issn.1000?436x.2022025.
    [9] FU Min, MEI Weidong, and ZHANG Rui. Multi-active/passive-IRS enabled wireless information and power transfer: Active IRS deployment and performance analysis[J]. IEEE Communications Letters, 2023, 27(8): 2217–2221. doi: 10.1109/LCOMM.2023.3287573.
    [10] CUI Miao, ZHANG Guangchi, and ZHANG Rui. Secure wireless communication via intelligent reflecting surface[J]. IEEE Wireless Communications Letters, 2019, 8(5): 1410–1414. doi: 10.1109/LWC.2019.2919685.
    [11] FANG Xingchen. Joint channel estimation algorithm for IRS-assisted multi-user MIMO systems[J]. IEEE Communications Letters, 2024, 28(2): 367–371. doi: 10.1109/LCOMM.2023.3346914.
    [12] DI RENZO M, ZAPPONE A, DEBBAH M, et al. Smart radio environments empowered by reconfigurable intelligent surfaces: How it works, state of research, and the road ahead[J]. IEEE Journal on Selected Areas in Communications, 2020, 38(11): 2450–2525. doi: 10.1109/JSAC.2020.3007211.
    [13] 季薇, 劉子卿. IRS輔助的異構SWIPT-NOMA系統(tǒng)資源分配方案[J]. 通信學報, 2024, 45(4): 39–53. doi: 10.11959/j.issn.1000-436x.2024027.

    JI Wei and LIU Ziqing. Resource allocation scheme for IRS assisted heterogeneous SWIPT-NOMA system[J]. Journal on Communications, 2024, 45(4): 39–53. doi: 10.11959/j.issn.1000-436x.2024027.
    [14] LI Zhendong, CHEN Wen, WU Qingqing, et al. Joint beamforming design and power splitting optimization in IRS-assisted SWIPT NOMA networks[J]. IEEE Transactions on Wireless Communications, 2022, 21(3): 2019–2033. doi: 10.1109/TWC.2021.3108901.
    [15] GOKTAS M B, DURSUN Y, and DING Zhiguo. IRS and SWIPT-assisted full-duplex NOMA for 6G umMTC[J]. IEEE Transactions on Green Communications and Networking, 2023, 7(4): 1957–1970. doi: 10.1109/TGCN.2023.3289505.
    [16] LIU Qiuyan, LU Manchun, LI Na, et al. Joint beamforming and power splitting optimization for RIS-assited cooperative SWIPT NOMA systems[C]. 2022 IEEE Wireless Communications and Networking Conference, Austin, USA, 2022: 351–356. doi: 10.1109/WCNC51071.2022.9771850.
    [17] SAMY M, AI-HRAISHAWI H, KISSELEFF S, et al. Multiple RIS-assisted cooperative NOMA with user selection[C]. 2023 IEEE Global Communications Conference, Kuala Lumpur, Malaysia, 2023: 1405–1410. doi: 10.1109/GLOBECOM54140.2023.10437225.
    [18] 朱政宇, 徐金雷, 孫鋼燦, 等. 基于IRS輔助的SWIPT物聯(lián)網(wǎng)系統(tǒng)安全波束成形設計[J]. 通信學報, 2021, 42(4): 185–193. doi: 10.11959/j.issn.1000-436x.2021060.

    ZHU Zhengyu, XU Jinlei, SUN Gangcan, et al. Secure beamforming design for IRS-assisted SWIPT Internet of Things system[J]. Journal on Communications, 2021, 42(4): 185–193. doi: 10.11959/j.issn.1000-436x.2021060.
    [19] SHEN Yanyan, WANG Chunjie, ZANG Weilin, et al. Outage constrained max-min secrecy rate optimization for IRS-aided SWIPT systems with artificial noise[J]. IEEE Internet of Things Journal, 2024, 11(6): 9814–9828. doi: 10.1109/JIOT.2023.3325362.
    [20] HAN Hui, CAO Yang, SHENG Min, et al. IRS-aided secure MISO-NOMA networks towards internal and external eavesdropping[C]. 2022 IEEE Global Communications Conference, Rio de Janeiro, Brazil, 2022: 4364–4370. doi: 10.1109/GLOBECOM48099.2022.10000742.
    [21] XIAO Liang, HONG Siyuan, XU Shiyu, et al. IRS-aided energy-efficient secure WBAN transmission based on deep reinforcement learning[J]. IEEE Transactions on Communications, 2022, 70(6): 4162–4174. doi: 10.1109/TCOMM.2022.3169813.
    [22] LI Baogang, SI Fuqiang, HAN Dongsheng, et al. IRS-aided SWIPT systems with power splitting and artificial noise[J]. China Communications, 2022, 19(4): 108–120. doi: 10.23919/JCC.2022.04.009.
    [23] PERERA T D P, JAYAKODY D N K, SHARMA S K, et al. Simultaneous wireless information and power transfer (SWIPT): Recent advances and future challenges[J]. IEEE Communications Surveys & Tutorials, 2018, 20(1): 264–302. doi: 10.1109/COMST.2017.2783901.
    [24] TANG Jie, LUO Jingci, LIU Mingqian, et al. Energy efficiency optimization for NOMA with SWIPT[J]. IEEE Journal of Selected Topics in Signal Processing, 2019, 13(3): 452–466. doi: 10.1109/JSTSP.2019.2898114.
    [25] LI Qiang, HONG Mingyi, WAI H T, et al. Transmit solutions for MIMO wiretap channels using alternating optimization[J]. IEEE Journal on Selected Areas in Communications, 2013, 31(9): 1714–1727. doi: 10.1109/JSAC.2013.130906.
    [26] REN Juanjuan, LEI Xianfu, PENG Zhangjie, et al. RIS-assisted cooperative NOMA with SWIPT[J]. IEEE Wireless Communications Letters, 2023, 12(3): 446–450. doi: 10.1109/LWC.2022.3229843.
    [27] XU Yanqing, SHEN Chao, DING Zhiguo, et al. Joint beamforming and power-splitting control in downlink cooperative SWIPT NOMA systems[J]. IEEE Transactions on Signal Processing, 2017, 65(18): 4874–4886. doi: 10.1109/TSP.2017.2715008.
    [28] WU Qingqing and ZHANG Rui. Joint active and passive beamforming optimization for intelligent reflecting surface assisted SWIPT Under QoS Constraints[J]. IEEE Journal on Selected Areas in Communications, 2020, 38(8): 1735–1748. doi: 10.1109/JSAC.2020.3000807.
    [29] CAO Pan, THOMPSON J, and POOR H V. A sequential constraint relaxation algorithm for rank-one constrained problems[C]. The 25th European Signal Processing Conference, Kos, Greece, 2017: 1060–1064. doi: 10.23919/EUSIPCO.2017.8081370.
    [30] BEN-TAL A and NEMIROVSKIAEI A S. Lectures on Modern Convex Optimization: Analysis, Algorithms, and Engineering Applications[M]. Philadelphia, USA: Society for Industrial and Applied Mathematics, 2001.
    [31] BOYD S and VANDENBERGHE L. Convex Optimization[M]. Cambridge: Cambridge University Press, 2004.
  • 加載中
圖(5) / 表(3)
計量
  • 文章訪問數(shù):  245
  • HTML全文瀏覽量:  82
  • PDF下載量:  53
  • 被引次數(shù): 0
出版歷程
  • 收稿日期:  2024-09-27
  • 修回日期:  2025-02-21
  • 網(wǎng)絡出版日期:  2025-02-25
  • 刊出日期:  2025-02-28

目錄

    /

    返回文章
    返回