可重構智能超表面使能的協(xié)作無線攜能同傳-非正交多址接入系統(tǒng)安全傳輸方案
doi: 10.11999/JEIT240822 cstr: 32379.14.JEIT240822
-
1.
南京郵電大學通信與信息工程學院 南京 210003
-
2.
南京郵電大學電子與光學工程學院 南京 210023
Secure Transmission Scheme for Reconfigurable Intelligent Surface-enabled Cooperative Simultaneous Wireless Information and Power Transfer Non-Orthogonal Multiple Access System
-
1.
College of Telecommunications and Information Engineering, Nanjing University of Posts and Telecommunications, Nanjing 210003, China
-
2.
College of Electronic and Optical Engineering, Nanjing University of Posts and Telecommunications, Nanjing 210023, China
-
摘要: 可重構智能超表面(RIS)因能提供額外的無源波束增益被視為一項頗具前景的技術??紤]到未來大型物聯(lián)網(wǎng)中不同用戶服務需求的多樣性及信息傳輸?shù)陌踩裕撐拿嫦騾f(xié)作無線攜能同傳-非正交多址接入(SWIPT-NOMA)系統(tǒng),提出一種RIS使能的安全傳輸方案。通過合理部署RIS的位置,將其同時作用于直接傳輸階段和協(xié)作傳輸階段。在滿足非正交多址接入(NOMA)弱用戶信息速率需求、NOMA強用戶能量收集需求和基站最小發(fā)射功率的條件下,通過聯(lián)合優(yōu)化基站的有源波束成形、RIS的相移矩陣、強用戶的功率分割系數(shù)等來最大化強用戶的保密速率。為解決所提的多變量耦合的非凸優(yōu)化問題,該文基于交替迭代優(yōu)化算法,對基站的有源波束成形、直接傳輸階段的RIS無源波束相移矩陣、協(xié)作傳輸階段的RIS有源波束相移矩陣以及強用戶的功率分割系數(shù)等進行了多次交替迭代優(yōu)化,直至算法收斂。仿真結果驗證了該文算法的收斂性,且與其它基準方案相比,所提方案可進一步提高強用戶的保密速率。Abstract:
Objective The Reconfigurable Intelligent Surface (RIS) is emerging as a promising technology due to its ability to provide passive beamforming gains, which can be seamlessly integrated into existing wireless networks without altering physical layer standards. The integration of RIS with other advanced technologies offers new opportunities for communication network design. In the context of future large-scale Internet of Things (IoT) systems, users are expected to have diverse requirements. These differences in structure and function lead to two distinct receiver operation modes: Power Splitting (PS) and Time Switching (TS). Furthermore, users’ service needs may vary, including energy harvesting and information transmission. In practice, IoT terminals often face energy constraints. Additionally, the network typically operates in an open wireless environment, where the inherent broadcasting nature of wireless channels may introduce security vulnerabilities. To address the diverse service demands in large-scale IoT networks and ensure secure information transmission, this study proposes an RIS-enabled secure transmission scheme for a cooperative Simultaneous Wireless Information and Power Transfer Non-Orthogonal Multiple Access (SWIPT-NOMA) system. Methods The RIS is strategically deployed to assist transmission during both the direct and cooperative transmission stages. The goal is to maximize the secrecy rate of the strong NOMA user, subject to the information rate requirements of the weak NOMA user, the energy harvesting needs of the strong NOMA user, and the base station’s minimum transmission power. To solve this multivariable-coupled, non-convex optimization problem, an alternating iterative optimization algorithm is applied. The algorithm optimizes the base station’s active beamforming, the RIS’s passive beam phase shift matrix in the direct transmission stage, the RIS’s active beam phase shift matrix in the cooperative transmission stage, and the PS coefficient of the strong user. These parameters are iteratively adjusted until convergence is achieved. Results and Discussions The convergence of the algorithm is demonstrated in ( Fig. 3 ). As the number of RIS components increases and the number of iterations grows, the secrecy rate of the strong user (U2) gradually improves until it converges. To evaluate the effectiveness of the proposed scheme, it is compared with several benchmark schemes: (1) The random PS coefficient scheme, where RIS is used in both the direct and cooperative transmission stages, and the PS coefficients for strong user U2 are randomly generated. (2) The random RIS phase shift matrix scheme, where RIS enables both transmission stages, with phase shift matrices for both stages randomly generated. (3) The SDR scheme, in which RIS is used in both transmission stages, and the phase shift matrices are optimized using the SDR method. (4) The RIS-enabled direct transmission scheme, where RIS is used only in the direct transmission stage. The impact of the number of base station antennas on the system’s secrecy rate is shown in (Fig. 4 ), and the effect of the number of RIS components on the secrecy rate is explored in (Fig. 5 ). Compared to the other baseline schemes, the proposed scheme achieves a higher secrecy rate for the strong user.Conclusions This paper addresses the challenge of diverse service requirements for users in future large-scale IoT networks and the security of information transmission by designing a secure transmission scheme for an RIS-enabled cooperative SWIPT-NOMA communication system. RIS assists communication in both the direct and cooperative transmission stages. The secrecy rate of the strong user is maximized while considering the information rate requirements of weak NOMA users, the energy harvesting needs of strong NOMA users, and the base station’s minimum transmission power. The proposed optimization problem is a non-convex, multi-variable problem, which is difficult to solve directly. To address this, the problem is divided into several sub-problems, and the active beamforming of the base station, the passive beam phase shift matrix of the RIS in the direct transmission stage, the active beam phase shift matrix of the RIS in the cooperative transmission stage, and the power splitting coefficient of the strong user are iteratively optimized until convergence. Simulation results demonstrate that the secrecy rate of the proposed scheme outperforms that of the scheme where RIS is enabled only in the direct transmission stage. Compared to other baseline schemes, the proposed scheme further enhances the secrecy rate for strong users. -
1 基站有源波束成形子問題求解算法
令$ i = 0 $,初始化可行解$ {\boldsymbol{W}}_1^{(i)},\;{\boldsymbol{W}}_2^{(i)} $,輔助變量$ x_1^{(i)} $ for 交替更新求解 已知$ {\boldsymbol{W}}_1^{(i)},\;{\boldsymbol{W}}_2^{(i)} $,計算$ {t^{(i + 1)}} $ 已知$ {\boldsymbol{W}}_1^{(i)},\;{\boldsymbol{W}}_2^{(i)},\;x_1^{(i)} $, 計算$ {a^{(i + 1)}} $ 已知$ {t^{(i + 1)}},{a^{(i + 1)}} $,求解問題P2,獲得${\boldsymbol{W}}_1^{(i + 1)},\;{\boldsymbol{W}}_2^{(i + 1)} $,
$ x_1^{(i + 1)} $更新$ i = i + 1 $ end for:收斂 輸出基站有源波束成形矩陣$ {\boldsymbol{W}}_1^{(i)},\;{\boldsymbol{W}}_2^{(i)} $,輔助變量$ x_1^{(i)} $ 下載: 導出CSV
2 直接傳輸階段RIS無源波束成形優(yōu)化子問題求解算法
令$ i = 0 $,初始化可行解$ {\boldsymbol{Q}}_1^{(i)} $,輔助變量$ x_2^{(i)} $ for 交替更新求解 已知$ {\boldsymbol{Q}}_1^{(i)} $,計算$ {z^{(i + 1)}} $ 已知$ {\boldsymbol{Q}}_1^{(i)},\;x_2^{(i)} $, 計算$ {b^{(i + 1)}} $ 已知$ {z^{(i + 1)}},{b^{(i + 1)}} $,求解問題P4,獲得$ {\boldsymbol{Q}}_1^{(i + 1)},x_2^{(i + 1)} $ 更新$ i = i + 1 $ end for:收斂 輸出基站有源波束成形矩陣$ {\boldsymbol{Q}}_1^{(i)} $,輔助變量$ x_2^{(i)} $ 下載: 導出CSV
3 基于交替迭代的整體算法
令$ i = 0 $,初始化可行解$ {\boldsymbol{w}}_1^{(i)},{\boldsymbol{w}}_2^{(i)},{\boldsymbol{Q}}_1^{(i)},{\boldsymbol{Q}}_2^{(i)},{\rho ^{(i)}} $ for 交替更新求解$ {{\boldsymbol{w}}_1},{{\boldsymbol{w}}_2},{{\boldsymbol{Q}}_1},{{\boldsymbol{Q}}_2},\rho $ 已知$ {\boldsymbol{Q}}_1^{(i)},{\boldsymbol{Q}}_2^{(i)},{\rho ^{(i)}} $,求解問題P2,獲得$ {\boldsymbol{w}}_1^{(i + 1)},{\boldsymbol{w}}_2^{(i + 1)} $ 已知$ {\boldsymbol{w}}_1^{(i + 1)},{\boldsymbol{w}}_2^{(i + 1)},{\boldsymbol{Q}}_2^{(i)},{\rho ^{(i)}} $,求解問題P4,獲得$ {\boldsymbol{Q}}_1^{(i + 1)} $ 已知$ {\boldsymbol{w}}_1^{(i + 1)},{\boldsymbol{w}}_2^{(i + 1)},{\boldsymbol{Q}}_1^{(i + 1)},{\rho ^{(i)}} $,求解問題P6,獲得
$ {\boldsymbol{Q}}_2^{(i + 1)} $已知$ {\boldsymbol{w}}_1^{(i + 1)},{\boldsymbol{w}}_2^{(i + 1)},{\boldsymbol{Q}}_1^{(i + 1)},{\boldsymbol{Q}}_2^{(i + 1)} $,求解問題P8,獲得
$ {\rho ^{(i + 1)}} $更新$ i = i + 1 $ end for:收斂 下載: 導出CSV
-
[1] PRASAD R, MANTRI D S, PANDEY S K, et al. 6G Connectivity-Systems, Technologies, and Applications: Digitalization of New Technologies, 6G and Evolution[M]. Aalborg: River Publishers, 2024: 139–156. [2] SARKAR D, YOGITA, YADAV S S, et al. A comprehensive survey on IRS-assisted NOMA-based 6G wireless network: Design perspectives, challenges and future directions[J]. IEEE Transactions on Network and Service Management, 2024, 21(2): 2539–2562. doi: 10.1109/TNSM.2023.3348138. [3] AL-DWEIK A, ALSUSA E, DOBRE O A, et al. Multi-symbol rate NOMA for improving connectivity in 6G communications networks[J]. IEEE Communications Magazine, 2024, 62(7): 118–123. doi: 10.1109/MCOM.001.2300351. [4] DINH P, ARFAOUI M A, SHARAFEDDINE S, et al. A low-complexity framework for joint user pairing and power control for cooperative NOMA in 5G and beyond cellular networks[J]. IEEE Transactions on Communications, 2020, 68(11): 6737–6749. doi: 10.1109/TCOMM.2020.3009262. [5] BENBUK A A, KOUZAYHA N, COSTANTINE J, et al. Charging and wake-up of IoT devices using harvested RF energy with near-zero power consumption[J]. IEEE Internet of Things Magazine, 2023, 6(1): 162–167. doi: 10.1109/IOTM.001.2200202. [6] SHERAZI H H R, ZORBAS D, and O’FLYNN B. A comprehensive survey on RF energy harvesting: Applications and performance determinants[J]. Sensors, 2022, 22(8): 2990. doi: 10.3390/s22082990. [7] JAMEEL F, WYNE S, KADDOUM G, et al. A comprehensive survey on cooperative relaying and jamming strategies for physical layer security[J]. IEEE Communications Surveys & Tutorials, 2019, 21(3): 2734–2771. doi: 10.1109/COMST.2018.2865607. [8] 盧漢成, 王亞正, 趙丹, 等. 智能反射表面輔助的無線通信系統(tǒng)的物理層安全綜述[J]. 通信學報, 2022, 43(2): 171–184. doi: 10.11959/j.issn.1000?436x.2022025.LU Hancheng, WANG Yazheng, ZHAO Dan, et al. Survey of physical layer security of intelligent reflecting surface-assisted wireless communication systems[J]. Journal on Communications, 2022, 43(2): 171–184. doi: 10.11959/j.issn.1000?436x.2022025. [9] FU Min, MEI Weidong, and ZHANG Rui. Multi-active/passive-IRS enabled wireless information and power transfer: Active IRS deployment and performance analysis[J]. IEEE Communications Letters, 2023, 27(8): 2217–2221. doi: 10.1109/LCOMM.2023.3287573. [10] CUI Miao, ZHANG Guangchi, and ZHANG Rui. Secure wireless communication via intelligent reflecting surface[J]. IEEE Wireless Communications Letters, 2019, 8(5): 1410–1414. doi: 10.1109/LWC.2019.2919685. [11] FANG Xingchen. Joint channel estimation algorithm for IRS-assisted multi-user MIMO systems[J]. IEEE Communications Letters, 2024, 28(2): 367–371. doi: 10.1109/LCOMM.2023.3346914. [12] DI RENZO M, ZAPPONE A, DEBBAH M, et al. Smart radio environments empowered by reconfigurable intelligent surfaces: How it works, state of research, and the road ahead[J]. IEEE Journal on Selected Areas in Communications, 2020, 38(11): 2450–2525. doi: 10.1109/JSAC.2020.3007211. [13] 季薇, 劉子卿. IRS輔助的異構SWIPT-NOMA系統(tǒng)資源分配方案[J]. 通信學報, 2024, 45(4): 39–53. doi: 10.11959/j.issn.1000-436x.2024027.JI Wei and LIU Ziqing. Resource allocation scheme for IRS assisted heterogeneous SWIPT-NOMA system[J]. Journal on Communications, 2024, 45(4): 39–53. doi: 10.11959/j.issn.1000-436x.2024027. [14] LI Zhendong, CHEN Wen, WU Qingqing, et al. Joint beamforming design and power splitting optimization in IRS-assisted SWIPT NOMA networks[J]. IEEE Transactions on Wireless Communications, 2022, 21(3): 2019–2033. doi: 10.1109/TWC.2021.3108901. [15] GOKTAS M B, DURSUN Y, and DING Zhiguo. IRS and SWIPT-assisted full-duplex NOMA for 6G umMTC[J]. IEEE Transactions on Green Communications and Networking, 2023, 7(4): 1957–1970. doi: 10.1109/TGCN.2023.3289505. [16] LIU Qiuyan, LU Manchun, LI Na, et al. Joint beamforming and power splitting optimization for RIS-assited cooperative SWIPT NOMA systems[C]. 2022 IEEE Wireless Communications and Networking Conference, Austin, USA, 2022: 351–356. doi: 10.1109/WCNC51071.2022.9771850. [17] SAMY M, AI-HRAISHAWI H, KISSELEFF S, et al. Multiple RIS-assisted cooperative NOMA with user selection[C]. 2023 IEEE Global Communications Conference, Kuala Lumpur, Malaysia, 2023: 1405–1410. doi: 10.1109/GLOBECOM54140.2023.10437225. [18] 朱政宇, 徐金雷, 孫鋼燦, 等. 基于IRS輔助的SWIPT物聯(lián)網(wǎng)系統(tǒng)安全波束成形設計[J]. 通信學報, 2021, 42(4): 185–193. doi: 10.11959/j.issn.1000-436x.2021060.ZHU Zhengyu, XU Jinlei, SUN Gangcan, et al. Secure beamforming design for IRS-assisted SWIPT Internet of Things system[J]. Journal on Communications, 2021, 42(4): 185–193. doi: 10.11959/j.issn.1000-436x.2021060. [19] SHEN Yanyan, WANG Chunjie, ZANG Weilin, et al. Outage constrained max-min secrecy rate optimization for IRS-aided SWIPT systems with artificial noise[J]. IEEE Internet of Things Journal, 2024, 11(6): 9814–9828. doi: 10.1109/JIOT.2023.3325362. [20] HAN Hui, CAO Yang, SHENG Min, et al. IRS-aided secure MISO-NOMA networks towards internal and external eavesdropping[C]. 2022 IEEE Global Communications Conference, Rio de Janeiro, Brazil, 2022: 4364–4370. doi: 10.1109/GLOBECOM48099.2022.10000742. [21] XIAO Liang, HONG Siyuan, XU Shiyu, et al. IRS-aided energy-efficient secure WBAN transmission based on deep reinforcement learning[J]. IEEE Transactions on Communications, 2022, 70(6): 4162–4174. doi: 10.1109/TCOMM.2022.3169813. [22] LI Baogang, SI Fuqiang, HAN Dongsheng, et al. IRS-aided SWIPT systems with power splitting and artificial noise[J]. China Communications, 2022, 19(4): 108–120. doi: 10.23919/JCC.2022.04.009. [23] PERERA T D P, JAYAKODY D N K, SHARMA S K, et al. Simultaneous wireless information and power transfer (SWIPT): Recent advances and future challenges[J]. IEEE Communications Surveys & Tutorials, 2018, 20(1): 264–302. doi: 10.1109/COMST.2017.2783901. [24] TANG Jie, LUO Jingci, LIU Mingqian, et al. Energy efficiency optimization for NOMA with SWIPT[J]. IEEE Journal of Selected Topics in Signal Processing, 2019, 13(3): 452–466. doi: 10.1109/JSTSP.2019.2898114. [25] LI Qiang, HONG Mingyi, WAI H T, et al. Transmit solutions for MIMO wiretap channels using alternating optimization[J]. IEEE Journal on Selected Areas in Communications, 2013, 31(9): 1714–1727. doi: 10.1109/JSAC.2013.130906. [26] REN Juanjuan, LEI Xianfu, PENG Zhangjie, et al. RIS-assisted cooperative NOMA with SWIPT[J]. IEEE Wireless Communications Letters, 2023, 12(3): 446–450. doi: 10.1109/LWC.2022.3229843. [27] XU Yanqing, SHEN Chao, DING Zhiguo, et al. Joint beamforming and power-splitting control in downlink cooperative SWIPT NOMA systems[J]. IEEE Transactions on Signal Processing, 2017, 65(18): 4874–4886. doi: 10.1109/TSP.2017.2715008. [28] WU Qingqing and ZHANG Rui. Joint active and passive beamforming optimization for intelligent reflecting surface assisted SWIPT Under QoS Constraints[J]. IEEE Journal on Selected Areas in Communications, 2020, 38(8): 1735–1748. doi: 10.1109/JSAC.2020.3000807. [29] CAO Pan, THOMPSON J, and POOR H V. A sequential constraint relaxation algorithm for rank-one constrained problems[C]. The 25th European Signal Processing Conference, Kos, Greece, 2017: 1060–1064. doi: 10.23919/EUSIPCO.2017.8081370. [30] BEN-TAL A and NEMIROVSKIAEI A S. Lectures on Modern Convex Optimization: Analysis, Algorithms, and Engineering Applications[M]. Philadelphia, USA: Society for Industrial and Applied Mathematics, 2001. [31] BOYD S and VANDENBERGHE L. Convex Optimization[M]. Cambridge: Cambridge University Press, 2004. -