一级黄色片免费播放|中国黄色视频播放片|日本三级a|可以直接考播黄片影视免费一级毛片

高級(jí)搜索

留言板

尊敬的讀者、作者、審稿人, 關(guān)于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復(fù)。謝謝您的支持!

姓名
郵箱
手機(jī)號(hào)碼
標(biāo)題
留言內(nèi)容
驗(yàn)證碼

DroneRFb-DIR: 用于非合作無人機(jī)個(gè)體識(shí)別的射頻信號(hào)數(shù)據(jù)集

任俊宇 俞寧寧 周成偉 史治國(guó) 陳積明

任俊宇, 俞寧寧, 周成偉, 史治國(guó), 陳積明. DroneRFb-DIR: 用于非合作無人機(jī)個(gè)體識(shí)別的射頻信號(hào)數(shù)據(jù)集[J]. 電子與信息學(xué)報(bào), 2025, 47(3): 573-581. doi: 10.11999/JEIT240804
引用本文: 任俊宇, 俞寧寧, 周成偉, 史治國(guó), 陳積明. DroneRFb-DIR: 用于非合作無人機(jī)個(gè)體識(shí)別的射頻信號(hào)數(shù)據(jù)集[J]. 電子與信息學(xué)報(bào), 2025, 47(3): 573-581. doi: 10.11999/JEIT240804
REN Junyu, YU Ningning, ZHOU Chengwei, SHI Zhiguo, CHEN Jiming. DroneRFb-DIR: An RF Signal Dataset for Non-cooperative Drone Individual Identification[J]. Journal of Electronics & Information Technology, 2025, 47(3): 573-581. doi: 10.11999/JEIT240804
Citation: REN Junyu, YU Ningning, ZHOU Chengwei, SHI Zhiguo, CHEN Jiming. DroneRFb-DIR: An RF Signal Dataset for Non-cooperative Drone Individual Identification[J]. Journal of Electronics & Information Technology, 2025, 47(3): 573-581. doi: 10.11999/JEIT240804

DroneRFb-DIR: 用于非合作無人機(jī)個(gè)體識(shí)別的射頻信號(hào)數(shù)據(jù)集

doi: 10.11999/JEIT240804 cstr: 32379.14.JEIT240804
基金項(xiàng)目: 國(guó)家自然科學(xué)基金(U21A20456, 62271444),中央高?;究蒲袠I(yè)務(wù)費(fèi)(226-2023-00111, 226-2024-00004)
詳細(xì)信息
    作者簡(jiǎn)介:

    任俊宇:男,博士生,研究方向?yàn)榉礋o人機(jī)檢測(cè)識(shí)別、信號(hào)估計(jì)等

    俞寧寧:男,博士生,研究方向?yàn)榉礋o人機(jī)檢測(cè)、電磁頻譜認(rèn)知、信號(hào)識(shí)別等

    周成偉:男,博士,研究員,研究方向?yàn)殛嚵行盘?hào)處理、張量信號(hào)處理、無人機(jī)智能監(jiān)測(cè)技術(shù)等

    史治國(guó):男,博士,教授,研究方向?yàn)樾盘?hào)處理及其定位應(yīng)用、物聯(lián)網(wǎng)等

    陳積明:男,博士,教授,研究方向?yàn)榫W(wǎng)絡(luò)優(yōu)化與控制、網(wǎng)絡(luò)系統(tǒng)安全、工業(yè)大數(shù)據(jù)與物聯(lián)網(wǎng)等

    通訊作者:

    史治國(guó) shizg@zju.edu.cn

  • 中圖分類號(hào): TN975

DroneRFb-DIR: An RF Signal Dataset for Non-cooperative Drone Individual Identification

Funds: The National Natural Science Foundation of China (U21A20456, 62271444), The Fundamental Research Funds for Central Universities (226-2023-00111, 226-2024-00004)
  • 摘要: 無人機(jī)射頻檢測(cè)是實(shí)現(xiàn)非合作無人機(jī)管控的手段之一,而基于射頻信號(hào)的無人機(jī)個(gè)體識(shí)別(DIR)是無人機(jī)檢測(cè)的重要環(huán)節(jié)。鑒于當(dāng)前DIR開源數(shù)據(jù)集缺失,該文公開了一個(gè)名為DroneRFb-DIR的無人機(jī)射頻信號(hào)數(shù)據(jù)集。該數(shù)據(jù)集使用軟件無線電設(shè)備采集無人機(jī)與遙控器間通信的射頻信號(hào),包含城市場(chǎng)景下的無人機(jī)種類共6類(每類無人機(jī)各包含3架不同個(gè)體)以及1類背景參考信號(hào)。采樣信號(hào)存儲(chǔ)為最原始的I/Q數(shù)據(jù),每類數(shù)據(jù)包含不少于40個(gè)片段,每個(gè)片段包含不少于4 M個(gè)采樣點(diǎn)。信號(hào)采集范圍為2.4~2.48 GHz,包含無人機(jī)飛控信號(hào)、圖傳信號(hào)以及周圍干擾設(shè)備的信號(hào)。該數(shù)據(jù)集包含詳細(xì)的個(gè)體編號(hào)和視距或非視距場(chǎng)景標(biāo)注,并已劃分訓(xùn)練集與測(cè)試集,以便于用戶進(jìn)行識(shí)別算法驗(yàn)證和性能對(duì)比分析。與此同時(shí),該文提供了一種基于快速頻率估計(jì)和時(shí)域相關(guān)分析的無人機(jī)個(gè)體識(shí)別方法,并在該數(shù)據(jù)集上驗(yàn)證了所提方法的有效性。
  • 圖  1  數(shù)據(jù)采集場(chǎng)景

    圖  2  DJI Mavic 3 Pro無人機(jī)信號(hào)時(shí)頻圖

    圖  3  無人機(jī)圖傳(紅色實(shí)線框)與飛控信號(hào)(藍(lán)色實(shí)線框)特征示意

    圖  4  寬帶信號(hào)的檢出流程

    圖  5  DJI Mavic 3 Pro的無人機(jī)飛控信號(hào)時(shí)頻圖

    圖  6  相鄰兩個(gè)時(shí)間窗FFT譜圖

    圖  7  無人機(jī)飛控信號(hào)組成

    圖  8  無人機(jī)個(gè)體飛控信號(hào)相關(guān)性曲線

    表  1  無人機(jī)探測(cè)手段特點(diǎn)

    探測(cè)手段最大有效距離(m)原理缺點(diǎn)
    雷達(dá)8000微多普勒無人機(jī)雷達(dá)截面積小,成本高,不適合城市場(chǎng)景
    音頻200時(shí)頻特征覆蓋范圍小,受噪聲影響大
    視覺1500外觀特征和運(yùn)動(dòng)特征受遮擋、天氣環(huán)境影響大
    射頻5000通信信道易受城市環(huán)境下干擾信號(hào)影響
    下載: 導(dǎo)出CSV

    表  2  個(gè)體標(biāo)簽與型號(hào)對(duì)應(yīng)關(guān)系

    個(gè)體標(biāo)簽 型號(hào)
    A1, A2, A3 DJI Mavic 3 Pro
    B 背景
    C1, C2, C3 DJI Mini 2 SE
    D1, D2, D3 DJI Mini 4 Pro
    E1, E2, E3 DJI Mini 3
    F1, F2, F3 DJI Air 3
    G1, G2, G3 DJI Air 2S
    下載: 導(dǎo)出CSV

    表  3  無人機(jī)個(gè)體識(shí)別結(jié)果

    種類標(biāo)簽識(shí)別率(%)
    A63.96
    B100.00
    C60.74
    D29.63
    E68.62
    F37.50
    G67.95
    下載: 導(dǎo)出CSV
  • [1] SHI Xiufang, YANG Chaoqun, XIE Weige, et al. Anti-drone system with multiple surveillance technologies: Architecture, implementation, and challenges[J]. IEEE Communications Magazine, 2018, 56(4): 68–74. doi: 10.1109/MCOM.2018.1700430.
    [2] 陳新穎, 盛敏, 李博, 等. 面向6G的無人機(jī)通信綜述[J]. 電子與信息學(xué)報(bào), 2022, 44(3): 781–789. doi: 10.11999/JEIT210789.

    CHEN Xinying, SHENG Min, LI Bo, et al. Survey on unmanned aerial vehicle communications for 6G[J]. Journal of Electronics & Information Technology, 2022, 44(3): 781–789. doi: 10.11999/JEIT210789.
    [3] KAUFMANN E, BAUERSFELD L, LOQUERCIO A, et al. Champion-level drone racing using deep reinforcement learning[J]. Nature, 2023, 620(7976): 982–987. doi: 10.1038/s41586-023-06419-4.
    [4] KUNERTOVA D. The war in Ukraine shows the game-changing effect of drones depends on the game[J]. Bulletin of the Atomic Scientists, 2023, 79(2): 95–102. doi: 10.1080/00963402.2023.2178180.
    [5] 國(guó)務(wù)院, 中央軍委. 無人駕駛航空器飛行管理暫行條例[EB/OL]. https://www.gov.cn/zhengce/content/202306/content_6888799.htm, 2023.

    The State Council of the People’s Republic of China, The Central Military Commission of the Communist Party of China. Interim regulations on the management of unmanned aircraft flights[EB/OL]. https://www.gov.cn/zhengce/content/202306/content_6888799.htm, 2023.
    [6] 聶偉, 戴琪霏, 楊小龍, 等. 基于多維信號(hào)特征的無人機(jī)探測(cè)識(shí)別方法[J]. 電子與信息學(xué)報(bào), 2024, 46(3): 1089–1099. doi: 10.11999/JEIT230302.

    NIE Wei, DAI Qifei, YANG Xiaolong, et al. Unmanned aerial vehicle detection and recognition method based on multi-dimensional signal feature[J]. Journal of Electronics & Information Technology, 2024, 46(3): 1089–1099. doi: 10.11999/JEIT230302.
    [7] SHI Zhiguo, CHANG Xianyu, YANG Chaoqun, et al. An acoustic-based surveillance system for amateur drones detection and localization[J]. IEEE Transactions on Vehicular Technology, 2020, 69(3): 2731–2739. doi: 10.1109/TVT.2020.2964110.
    [8] SI Zheng, LIU Chao, LIU Jianyu, et al. Application of SNNS model based on multi-dimensional attention in drone radio frequency signal classification[C].2024 IEEE International Conference on Acoustics, Speech and Signal Processing, Seoul, Republic of Korea, 2024: 231–235. doi: 10.1109/ICASSP48485.2024.10446694.
    [9] GLüGE S, NYFELER M, AGHAEBRAHIMIAN A, et al. Robust low-cost drone detection and classification using convolutional neural networks in low SNR environments[J]. IEEE Journal of Radio Frequency Identification, 2024, 8: 821–830. doi: 10.1109/JRFID.2024.3487303.
    [10] 俞寧寧, 毛盛健, 周成偉, 等. DroneRFa: 用于偵測(cè)低空無人機(jī)的大規(guī)模無人機(jī)射頻信號(hào)數(shù)據(jù)集[J]. 電子與信息學(xué)報(bào), 2024, 46(4): 1147–1156. doi: 10.11999/JEIT230570.

    YU Ningning, MAO Shengjian, ZHOU Chengwei, et al. DroneRFa: A large-scale dataset of drone radio frequency signals for detecting low-altitude drones[J]. Journal of Electronics & Information Technology, 2024, 46(4): 1147–1156. doi: 10.11999/JEIT230570.
    [11] YU Ningning, WU Jiajun, ZHOU Chengwei, et al. Open set learning for RF-based drone recognition via signal semantics[J]. IEEE Transactions on Information Forensics and Security, 2024, 19: 9894–9909. doi: 10.1109/TIFS.2024.3463535.
    [12] 彭鴻飛, 朱鑫潮, 周成偉, 等. 基于靜動(dòng)態(tài)綜合估計(jì)的無人機(jī)蜂群態(tài)勢(shì)感知技術(shù)[J]. 信號(hào)處理, 2024, 40(5): 826–838. doi: 10.16798/j.issn.1003-0530.2024.05.003.

    PENG Hongfei, ZHU Xinchao, ZHOU Chengwei, et al. UAV swarm situational awareness technology based on static and dynamic comprehensive estimations[J]. Journal of Signal Processing, 2024, 40(5): 826–838. doi: 10.16798/j.issn.1003-0530.2024.05.003.
    [13] ZHOU Chengwei, GU Yujie, SHI Zhiguo, et al. Structured nyquist correlation reconstruction for DOA estimation with sparse arrays[J]. IEEE Transactions on Signal Processing, 2023, 71: 1849–1862. doi: 10.1109/TSP.2023.3251110.
    [14] ZHENG Hang, ZHOU Chengwei, SHI Zhiguo, et al. Coarray tensor direction-of-arrival estimation[J]. IEEE Transactions on Signal Processing, 2023, 71: 1128–1142. doi: 10.1109/TSP.2023.3260559.
    [15] 鄭航, 周成偉, 王勇, 等. EMVS互質(zhì)面陣張量波束成形[J]. 信號(hào)處理, 2024, 40(2): 250–262. doi: 10.16798/j.issn.1003-0530.2024.02.003.

    ZHENG Hang, ZHOU Chengwei, WANG Yong, et al. Tensor beamforming for EMVS coprime planar array[J]. Journal of Signal Processing, 2024, 40(2): 250–262. doi: 10.16798/j.issn.1003-0530.2024.02.003.
    [16] WANG Qiexiang, WANG Longhui, YU Lebin, et al. An ID-based robust identification approach toward multitype noncooperative drones[J]. IEEE Sensors Journal, 2023, 23(9): 10179–10192. doi: 10.1109/JSEN.2023.3259203.
    [17] ZHAO Zheng, S?RKK? S, SJ?LUND J, et al. Probabilistic estimation of instantaneous frequencies of chirp signals[J]. IEEE Transactions on Signal Processing, 2023, 71: 461–476. doi: 10.1109/TSP.2023.3245720.
    [18] KHODARAHMI M and MAIHAMI V. A review on Kalman filter models[J]. Archives of Computational Methods in Engineering, 2023, 30(1): 727–747. doi: 10.1007/s11831-022-09815-7.
  • 加載中
圖(8) / 表(3)
計(jì)量
  • 文章訪問數(shù):  1322
  • HTML全文瀏覽量:  399
  • PDF下載量:  303
  • 被引次數(shù): 0
出版歷程
  • 收稿日期:  2024-09-19
  • 修回日期:  2025-02-21
  • 網(wǎng)絡(luò)出版日期:  2025-02-26
  • 刊出日期:  2025-03-01

目錄

    /

    返回文章
    返回