探索快遞物流網(wǎng)的離散數(shù)學模型
doi: 10.11999/JEIT240767
-
1.
蘭州財經大學信息工程與人工智能學院 蘭州 730020
-
2.
甘肅省智慧商務重點實驗室 蘭州 730020
-
3.
西北師范大學數(shù)學與統(tǒng)計學院 蘭州 730070
Exploring The Discrete Mathematical Models of Express Logistics Networks
-
1.
School of Information Engineering and Artificial Intelligence, Lanzhou University of Finance and Economics, Lanzhou 730020, China
-
2.
Gansu Provincial Key Laboratory of Smart Commerce, Lanzhou 730020, China
-
3.
College of Mathematics and Statistics, Northwest Normal University, Lanzhou 730070, China
-
摘要: 針對快遞物流網(wǎng)絡,該文研究:(1) 構建全新的快遞物流網(wǎng)的離散數(shù)學模型 (又稱拓撲模型);(2) 根據(jù)理論基礎從圖論學科的角度對快遞物流網(wǎng)絡拓撲模型進行定性分析,通過數(shù)學模型法結合參數(shù)統(tǒng)計、優(yōu)化算法等數(shù)學手段對模型進行定量分析。對拓撲模型中的邊賦予路長權重,并為快遞物流網(wǎng)拓撲模型設計了新的優(yōu)化算法(集散算法、控制集算法、預先指定子圖算法);(3) 以蘭州市城關區(qū)主城區(qū)作為快遞物流網(wǎng)拓撲模型的應用實例,實施了相應的優(yōu)化算法。同時針對模型計算面臨的復雜度等困難提出了解決辦法,為進一步完善、優(yōu)化快遞物流網(wǎng)絡提供了一定參考。
-
關鍵詞:
- 快遞物流網(wǎng) /
- 拓撲模型 /
- 優(yōu)化算法 /
- 計算復雜度 /
- 賦權圖
Abstract:Objective With the rapid growth of e-commerce, express delivery volumes have surged, placing increased demands on existing logistics infrastructure and operational models. An efficient express logistics network can help reduce costs, improve transportation efficiency, and enhance logistics management. Therefore, analyzing the structure and operation of express logistics networks, as well as identifying ways to optimize these networks, has become a critical focus for logistics companies. The goal is to improve operational efficiency and support balanced regional economic development. Current research on express logistics networks involves constructing various models, such as mathematical optimization models, decision models, and network evaluation models, and applying algorithms like heuristic, genetic, and greedy algorithms, as well as those based on complex network theory, to optimize network structure, performance, and planning decisions. However, a limitation of existing studies is the lack of models closely aligned with the practical realities of express logistics, and the absence of effective new algorithms to address the complex, evolving challenges faced by express logistics networks. This study proposes a novel discrete mathematical model, also known as a topology model, for express logistics networks from the perspective of graph theory. The model comprises a road network (physical network), a topology network (mathematical model), and an information network (soft control system), providing a closer alignment with real-world express logistics scenarios. Through both qualitative and quantitative analyses of the model, along with the design of corresponding optimization algorithms, this research offers a reference for the in-depth study and scientific optimization of express logistics networks. Methods This study employs various methods: (1) Mathematical Model Construction: A new discrete mathematical model for express logistics networks is developed, accounting for the nonlinear, stochastic, and discrete characteristics of the network. The model integrates physical, topological, and informational networks. (2) Qualitative Analysis: The topology model of the express logistics network is qualitatively analyzed using graph theory concepts and algorithms, where the network topology model is represented as a weighted structure in graph theory. (3) Quantitative Analysis: The mathematical model is analyzed quantitatively using statistical parameters, optimization algorithms, and other mathematical techniques. The edges in the topological model are assigned route length weights, and new optimization algorithms—such as the distribution algorithm, control set algorithm, and pre-designated subgraph algorithm—are proposed to optimize the express logistics network topology. (4) Case Study and Optimization: The topology model is applied to the express logistics network in the central district of Lanzhou City (Chengguan District), where corresponding optimization algorithms are implemented. Solutions to challenges, such as the computational complexity of the model, are proposed. Results and Discussions The mathematical model in this study is a topological graph based on graph theory, where various matrices are used to input the express logistics network’s topology into the computer for subsequent calculations. Innovation 1: A topological model of the express logistics network is created. Innovation 2: The topological model of the express logistics network is optimized and quantitatively analyzed, and a minimum weight path m-control set algorithm (m ≥ 2) and a pre-designated subgraph control algorithm are developed(Algorithm 3, Algorithm 4). These models and algorithms are then applied to the study of the express logistics network in the Chengguan District of Lanzhou City. Innovation 3: In response to the large-scale data and the limitations in computer computing power, as well as the absence of a super-large computer at the author’s institution, the large-scale matrix calculation is divided into smaller regional matrices for optimized computation. Innovation 4: Different optimization algorithms are selected for different areas of the road network map of Lanzhou City’s Chengguan District ( Fig. 4 ,Fig. 5 ). Multiple calculation results are integrated to obtain the minimum weight path of the pre-designated subgraph for the Chengguan District, validating the effectiveness of the model and algorithms.Conclusions This study addresses existing issues in express logistics network research through the aforementioned work and innovations. A new model and new algorithms, better suited to practical logistics scenarios, are developed. Based on the case study, new problems and methods are proposed, offering further possibilities for optimizing express logistics networks. With the rapid development of emerging technologies such as the Internet of Things, big data, and artificial intelligence, future research could focus on deeply integrating these technologies to enable real-time and accurate collection and analysis of logistics data. Access to high-quality and diverse data can further improve the accuracy of the model’s calculations and enhance intelligent decision-making capabilities. This study has only considered assigning route length weights to the edges in the topological model; future work may explore multi-objective, multi-weight optimization models for express logistics networks to meet the practical decision-making needs of different logistics service providers. -
1 無約束快遞集散 CD-算法
輸入:集裝$C(k) = \{ {A_{k,1}},{A_{k,2}}, \cdots ,{A_{k,n(k)}}\} $,其中${A_{k,j}}$是貨物,且有${A_{k,j}} \ne {A_{k,t}}$, $j \ne t$ 輸出:分散$D(k + 1)$ 在一般的快遞物流網(wǎng)中,不會為一個貨物進行 式(1)的無約束快遞集散,而是進行下面的多個快遞貨物的集裝和分散: 步驟1 集裝$C(k)$被分散,形成分散$D(k)$: (1) 分散集裝$C(k)$的貨物,其中有貨物${{\mathrm{ED}}_k} = \{ {A_{{k_i},1}},{A_{{k_i},2}}, \cdots ,{A_{{k_i},a({k_i})}}\} $被發(fā)送到客戶手中; (2) 又有新的貨物${{\mathrm{NB}}_k} = \{ {B_{k,1}},{B_{k,2}}, \cdots ,{B_{k,m(k)}}\} $補充進來。 步驟2 形成集裝$C(k + 1)$:將集合$(C(k)\backslash {{\mathrm{ED}}_k}) \cup {{\mathrm{NB}}_k}$中的貨物組裝成小集裝模塊${C_{k + 1,1}},{C_{k + 1,2}}, \cdots ,{C_{k + 1,n(k + 1)}}$,其中
$n(k + 1) \le n(k) - a({k_i}) + m(k)$,使得集裝$C(k + 1)$由這$n(k + 1)$個集裝模塊構成。步驟3 由集裝$C(k + 1)$返回分散$D(k + 1)$。 下載: 導出CSV
2 最小權重路控制集算法
輸入:權重路拓撲模型 ${G_{\rm{weight}}}(t)$ 輸出:權重路拓撲模型 ${G_{\rm{weight}}}(t)$ 的一個最小權重路控制集 步驟1 選擇節(jié)點 ${u_1} \in V({G_{\rm{weight}}}(t))$ 以及與節(jié)點 ${u_1}$ 相鄰的節(jié)點 ${w_1} \in {N_{\rm{ei}}}({u_1})$,使得路 $P({u_1},{w_1})$ 的權重之和為最小。得到節(jié)點集
合: ${U_1} \leftarrow \{ {u_1}\} $, ${W_1} \leftarrow \{ {w_1}\} $, ${V_1} = V({G_{\rm{weight}}}(t))\backslash ({U_1} \cup {W_1})$。步驟2 選擇節(jié)點 ${u_k} \in {V_k}$ 以及與節(jié)點 ${u_k}$ 相鄰的節(jié)點 ${w_k} \in {N_{\rm{ei}}}({u_k})$,使得路 $P({u_k},{w_k})$ 的權重之和是最小的,且 ${w_k}\not \in {U_{k - 1}}$。得到
節(jié)點集合:${U_k} \leftarrow {U_{k - 1}} \cup \{ {u_k}\} $, ${W_k} \leftarrow {W_{k - 1}} \cup \{ {w_k}\} $, ${V_k} = V({G_{\rm{weight}}}(t))\backslash ({U_k} \cup {W_k})$。轉到步驟3。步驟3 如果有節(jié)點 $x \in {V_k}$ 使得路 $P(x,y)$ ($y \in {N_{\rm{ei}}}(x)$) 的權重之和達到最小值,但是 $y\not \in {W_k}$,則令 ${W_k} \leftarrow {W_{k - 1}} \cup \{ x\} $,以及
${U_k} \leftarrow {U_{k - 1}} \cup \{ y\} $, ${V_k} = V({G_{\rm{weight}}}(t))\backslash ({U_k} \cup {W_k})$。轉到步驟4。步驟4 如果有 $|{V_k}| \ge 2$,轉到步驟2。否則,轉到步驟5。 步驟5 如果 ${V_k} = \{ z\} $,且有節(jié)點$ z' \in {N_{\rm{ei}}}(z) $,使得路 $ P(z,z') $ 的權重之和達到最小。當節(jié)點 $ z' \in {U_k} $,則令 ${W_{k + 1}} \leftarrow {W_k} \cup \{ z\} $,
${U_{k + 1}} \leftarrow {U_k}$;當節(jié)點 $ z' \in {W_k} $,則令 ${U_{k + 1}} \leftarrow {U_k} \cup \{ z\} $, ${W_{k + 1}} \leftarrow {W_k}$, ${V_{k + 1}} = V({G_{\rm{weight}}}(t))\backslash ({U_{k + 1}} \cup {W_{k + 1}}) = \varnothing $。轉到步驟6。步驟6 返回權重路拓撲模型 ${G_{\rm{weight}}}(t)$ 的最小權重路控制集 ${W_{k + 1}}$。 下載: 導出CSV
3 最小權重路 m-控制集算法 (m≥2)
輸入:在最小權重路控制集算法2中,最小權重路控制集 ${W_{k + 1}}$ 導出權重路拓撲圖${H_1} = G[{W_{k + 1}}]$,它是權重路拓撲模型 ${G_{\rm{weight}}}(t)$ 的一
個子圖輸出:權重路拓撲圖 ${H_m}$ 的最小權重路 m-控制集算法 (m≥2) 步驟1 對圖${H_1} = G[{W_{k + 1}}]$運用最小權重路控制集算法,得到權重路拓撲圖${H_1}$的一個最小權重路控制集${S_1}$,它是權重路拓撲模型
${G_{\rm{weight}}}(t)$的一個最小權重路 2-控制集,使得權重路拓撲模型${G_{\rm{weight}}}(t)$的任何一個節(jié)點$a$滿足:$a \in {S_1}$,或者有節(jié)點$b \in {S_1}$,使得路
$P(a,b)$的權重之和達到最小值,且有邊集$|E(P(a,b))| \le 2$。步驟2 節(jié)點集${S_1}$導出權重路拓撲圖${H_2} = G[{S_1}]$。實施最小權重路控制集算法2,得到權重路拓撲圖${H_1}$的一個最小權重路控制集${S_2}$,它
是權重路拓撲模型${G_{\rm{weight}}}(t)$的一個最小權重路 3-控制集。步驟$(m - 1)$ 節(jié)點集${S_{m - 2}}$ 導出權重路拓撲圖${H_{m - 1}} = G[{S_{m - 2}}]$。實施最小權重路控制集算法2后,得到權重路拓撲圖${H_m}$的一個最
小權重路控制集${S_{m - 1}}$,它是權重路拓撲模型${G_{\rm{weight}}}(t)$的一個最小權重路m-控制集。下載: 導出CSV
4 預先指定子圖控制算法
輸入:連通邊賦權圖$G(t)$,指定連通圖$G(t)$的一個真子圖$H(t)$ 輸出:連通圖$G(t)$的一個子圖$L(t)$,使得$H(t) \subset L(t)$,每個節(jié)點$u \in V(L(t))$到真子圖$H(t)$的距離最小 步驟1 選擇最大的節(jié)點子集合${V_1} \subset {V^*} = V(G(t))\backslash V(H(t))$,使對每一個節(jié)點 $x \in {V_1}$,有節(jié)點$y \in V(H(t))$ 與x 相鄰,并且邊
$xy \in {E^*} = E(G)\backslash E(H(t))$ 的權重最小,${V_1}$叫做 1-層節(jié)點集。做:${E_1} \leftarrow E(H(t))$, ${E_2} \leftarrow ({E_1} \cup E({V_1},V(H(t)))$,其中邊集合
$E({V_1},V(H(t)))$中的邊$ xy $權重最小,且滿足$x \in {V_1}$和$y \in V(H(t))$。步驟2 選擇最大的節(jié)點子集合${V_2} \subseteq {V^*}\backslash {V_1}$,使對每一個節(jié)點$x \in {V_2}$,有節(jié)點$y \in {V^*}\backslash {V_1}$與x相鄰,并且邊$xy \in {E^*}\backslash E({V_1},V(H(t)))$ 的
權重最小,${V_2}$叫做 2-層節(jié)點集。做:${E_3} \leftarrow {E_2} \cup E({V_2},{V_1})$,其中邊集合$E({V_2},{V_1})$中的邊$ xy $權重最小,且滿足$x \in {V_1}$和$y \in {V_2}$。步驟3 如果$k$-層節(jié)點集${V_k} = {V^*}\backslash \cup _{i = 1}^{k - 1}{V_i} \ne \varnothing $,轉到步驟2,否則轉到步驟4。 步驟4 如果$k$-層節(jié)點集${V_k} = {V^*}\backslash \cup _{i = 1}^{k - 1}{V_i} = \varnothing $,做:$V(L(t)) \leftarrow V(G(t))$, $E(L(t)) \leftarrow {E_2} \cup E({V_2},{V_1}) \cup E({V_3},{V_2}) \cup \cdots \cup E({V_{k - 1}},{V_{k - 2}})$
到步驟5步驟5 返回連通圖$G(t)$的子圖$L(t)$,每個節(jié)點 $u \in V(L(t))$到真子圖$H(t)$的距離最小。 下載: 導出CSV
表 1 相關算法比較和評估
算法 核心思想 性能比較及適用范圍 最小權重路
控制集算法通過貪心選擇和迭代構建的方式,逐步逼近最優(yōu)解,即在滿足控制集條件下使權重之和最小。 計算過程較為直觀,其時間、空間復雜度與圖的規(guī)模和迭代次數(shù)有關,可能在大規(guī)模復雜網(wǎng)絡中效率較低。適用于規(guī)模較小或結構簡單、連通性較強的網(wǎng)絡。 最小權重路
m-控制集
(m≥2)算法通過基于子圖的迭代操作,利用算法2作為基礎步驟,逐步構建出權重路拓撲模型的最小權重m-控制集。這種方法通過分解問題為多個子問題來解決尋找特定階數(shù)最小權重控制集的復雜問題。 在計算上比最小權重路控制集算法更復雜,但通過多次迭代和基于子圖的操作,其求解精度相對算法 2會更高。適用于多層網(wǎng)絡的層次化資源管理等,特別是當問題的求解依賴于前一階控制集的結果,并且需要不斷細化和擴展控制集以滿足更復雜的條件時。 預先指定子圖
控制算法算法通過層次選擇節(jié)點集逐步找到最優(yōu)路徑。通過最大化節(jié)點集和最小化邊權重來保證每個節(jié)點都與指定的真子圖保持最小距離。 在優(yōu)化子圖和控制集的過程中,能更好地處理特定拓撲結構,計算復雜度也是較高的。適合處理較為特殊的拓撲結構,如環(huán)型、樹型網(wǎng)等,尤其適合實際應用中先給定子圖的情況。 下載: 導出CSV
-
[1] 王詠儀. 考慮擁堵的軸輻式快遞網(wǎng)絡的布局優(yōu)化與資源均衡研究[J]. 上海管理科學, 2024, 46(1): 72–76,95. doi: 10.3969/j.issn.1005-9679.2024.01.014.WANG Yongyi. Layout optimization and resource balancing when considering congestion on the Hub-and-Spoke express network[J]. Shanghai Management Science, 2024, 46(1): 72–76,95. doi: 10.3969/j.issn.1005-9679.2024.01.014. [2] 常蘭, 劉湃. 碳交易視角下綠色快遞多式聯(lián)運網(wǎng)絡優(yōu)化[J]. 重慶電力高等??茖W校學報, 2023, 28(6): 37–43. doi: 10.3969/j.issn.1008-8032.2023.06.008.CHANG Lan and LIU Pai. A study on the network optimization of the multimodal transportation of green delivery from the perspective of carbon trading[J]. Journal of Chongqing Electric Power College, 2023, 28(6): 37–43. doi: 10.3969/j.issn.1008-8032.2023.06.008. [3] 吳旗韜, 李苑庭, 吳海玲, 等. 基于關鍵節(jié)點積極效應模型的快遞物流網(wǎng)絡點集挖掘[J]. 復雜系統(tǒng)與復雜性科學, 2024, 21(4): 28–33. doi: 10.13306/j.1672-3813.2024.04.005.WU Qitao, LI Yuanting, WU Hailing, et al. Nodes-set mining of express logistics network based on the key player problem-positive model[J]. Complex Systems and Complexity Science, 2024, 21(4): 28–33. doi: 10.13306/j.1672-3813.2024.04.005. [4] 李悅, 秦威. 基于混合軸輻式網(wǎng)絡的快遞運輸路徑再設計[J]. 工業(yè)工程, 2023, 26(6): 93–100. doi: 10.3969/j.issn.1007-7375.2023.06.010.LI Yue and QIN Wei. Re-design of express transportation route based on hybrid Hub-and-Spoke network[J]. Industrial Engineering Journal, 2023, 26(6): 93–100. doi: 10.3969/j.issn.1007-7375.2023.06.010. [5] 張建軍, 王嘉銘, 王天浩, 等. 低碳情景下的復合軸輻式快遞網(wǎng)絡規(guī)劃[J]. 同濟大學學報(自然科學版), 2023, 51(2): 288–294. doi: 10.11908/j.issn.0253-374x.21403.ZHANG Jianjun, WANG Jiaming, WANG Tianhao, et al. Multi-layered multi-service-leveled hybrid hub-spoke network design in low-carbon scenarios[J]. Journal of Tongji University (Natural Science), 2023, 51(2): 288–294. doi: 10.11908/j.issn.0253-374x.21403. [6] 楊從平, 鄭世玨, 黨永杰, 等. 基于連接成本的快遞網(wǎng)絡擁塞控制[J]. 中國管理科學, 2017, 25(4): 143–151. doi: 10.16381/j.cnki.issn1003-207x.2017.04.017.YANG Congping, ZHENG Shijue, DANG Yongjie, et al. Congestion control of express delivery network based on connection cost[J]. Chinese Journal of Management Science, 2017, 25(4): 143–151. doi: 10.16381/j.cnki.issn1003-207x.2017.04.017. [7] 楊從平, 鄭世玨, 黨永杰, 等. 基于配送時效和連接成本的快遞網(wǎng)絡優(yōu)化[J]. 系統(tǒng)工程理論與實踐, 2016, 36(8): 1983–1992. doi: 10.12011/1000-6788(2016)08-1983-10.YANG Congping, ZHENG Shijue, DANG Yongjie, et al. Optimization of express delivery network based on delivery timeliness and connection cost[J]. Systems Engineering-Theory & Practice, 2016, 36(8): 1983–1992. doi: 10.12011/1000-6788(2016)08-1983-10. [8] 趙晉, 張建軍, 嚴蔡華. 允許直達的混合軸輻式快遞網(wǎng)絡規(guī)劃模型與算法研究[J]. 中國管理科學, 2016, 24(11): 58–65. doi: 10.16381/j.cnki.issn1003-207x.2016.11.007.ZHAO Jin, ZHANG Jianjun, and YAN Caihua. Research on hybrid hub-spoke express network decision with Point-to-point direct shipment[J]. Chinese Journal of Management Science, 2016, 24(11): 58–65. doi: 10.16381/j.cnki.issn1003-207x.2016.11.007. [9] 鄭長江, 胡歡, 杜牧青. 考慮樞紐失效的多式聯(lián)運快遞網(wǎng)絡結構設計[J]. 吉林大學學報(工學版), 2023, 53(8): 2304–2311. doi: 10.13229/j.cnki.jdxbgxb.20211128.ZHENG Changjiang, HU Huan, and DU Muqing. Design of multimodal express delivery network structure considering hub failure[J]. Journal of Jilin University (Engineering and Technology Edition), 2023, 53(8): 2304–2311. doi: 10.13229/j.cnki.jdxbgxb.20211128. [10] 李苑君, 吳旗韜, 吳康敏, 等. “流空間”視角的電子商務快遞物流網(wǎng)絡結構研究——以珠三角城市群為例[J]. 地域研究與開發(fā), 2021, 40(2): 20–26. doi: 10.3969/j.issn.1003-2363.2021.02.004.LI Yuanjun, WU Qitao, WU Kangmin, et al. Structure of E-commerce express logistics network from the perspective of flow space: Take the Pearl River Delta urban agglomeration as example[J]. Areal Research and Development, 2021, 40(2): 20–26. doi: 10.3969/j.issn.1003-2363.2021.02.004. [11] 牟能冶, 康秋萍, 賈程方. 突發(fā)事件影響下的城市快遞網(wǎng)絡脆弱性評估[J]. 中國安全科學學報, 2020, 30(12): 125–132. doi: 10.16265/j.cnki.issn1003-3033.2020.12.018.MU Nengye, KANG Qiuping, and JIA Chengfang. Vulnerability assessment of urban express networks under influence of emergencies[J]. China Safety Science Journal, 2020, 30(12): 125–132. doi: 10.16265/j.cnki.issn1003-3033.2020.12.018. [12] 牟能冶, 康秋萍. 基于節(jié)點重要度網(wǎng)絡結構熵的城市快遞網(wǎng)絡抗毀性測度[J]. 綜合運輸, 2020, 42(3): 108–113.MU Nengye and KANG Qiuping. Invulnerability measurement of urban express network based on node importance network structure entropy[J]. China Transportation Review, 2020, 42(3): 108–113. [13] 謝逢潔, 崔文田. 加權快遞網(wǎng)絡魯棒性分析及優(yōu)化[J]. 系統(tǒng)工程理論與實踐, 2016, 36(9): 2391–2399. doi: 10.12011/1000-6788(2016)09-2391-09.XIE Fengjie and CUI Wentian. Analyzing and optimizing the robustness of weighted express networks[J]. Systems Engineering-Theory & Practice, 2016, 36(9): 2391–2399. doi: 10.12011/1000-6788(2016)09-2391-09. [14] Bondy A and Murty U S R. Graph Theory[M]. London, UK: Springer, 2008. [15] Gallian J A. A dynamic survey of graph labeling[J]. Electronic Journal of Combinatorics, 2022, 6(25): 4–623. [16] 卜月華, 王維凡, 呂新忠. 圖論及其應用[M]. 2版. 南京: 東南大學出版社, 2015.BU Yuehua, WANG Weifan, and LV Xinzhong. Graph Theory With Applications[M]. Nanjing: Southeast University Press, 2015. [17] YAO Bing and WANG Hongyu. Recent colorings and labelings in topological coding[J]. arXiv: 2106.15254, 2021. doi: 10.48550/arXiv.2106.15254. [18] 蘭州市統(tǒng)計局. 《蘭州統(tǒng)計年鑒》2023年[EB/OL]. https://tjj.lanzhou.gov.cn/art/2024/1/31/art_4866_1315620.html, 2024.Lanzhou Municipal Bureau of Statistics. Lanzhou Statistical Yearbook 2023[EB/OL]. https://tjj.lanzhou.gov.cn/art/2024/1/31/art_4866_1315620.html, 2024. [19] 甘肅地方史志網(wǎng). 《蘭州市城關區(qū)年鑒2024》[EB/OL]. 蘭州市城關區(qū)年鑒. http: //www. gsdfszw. org. cn/gsxnj/lzs_297/lzscgqnj123/202410/P020241024621772314554. pdf, 2024. Gansu Local History Network. Yearbook of Chengguan District, Lanzhou City 2024[EB/OL]. 蘭州市城關區(qū)年鑒. http://www.gsdfszw.org.cn/gsxnj/lzs_297/lzscgqnj123/202410/P020241024621772314554.pdf, 2024. [20] 王曉敏, 蘇靜, 姚兵. 基于格思想的圖結構相似問題的算法[J]. 計算機科學, 2021, 48(S1): 543–551. doi: 10.11896/jsjkx.201100167.WANG Xiaomin, SU Jing, and YAO Bing. Algorithms based on lattice thought for graph structure similarity[J]. Computer Science, 2021, 48(S1): 543–551. doi: 10.11896/jsjkx.201100167. -