一级黄色片免费播放|中国黄色视频播放片|日本三级a|可以直接考播黄片影视免费一级毛片

高級(jí)搜索

留言板

尊敬的讀者、作者、審稿人, 關(guān)于本刊的投稿、審稿、編輯和出版的任何問(wèn)題, 您可以本頁(yè)添加留言。我們將盡快給您答復(fù)。謝謝您的支持!

姓名
郵箱
手機(jī)號(hào)碼
標(biāo)題
留言內(nèi)容
驗(yàn)證碼

一種基于Transformer特征金字塔的自蒸餾目標(biāo)分割方法

陳雷 楊吉斌 曹鐵勇 鄭云飛 王楊 張波 林振華 李文斌

陳雷, 楊吉斌, 曹鐵勇, 鄭云飛, 王楊, 張波, 林振華, 李文斌. 一種基于Transformer特征金字塔的自蒸餾目標(biāo)分割方法[J]. 電子與信息學(xué)報(bào), 2025, 47(2): 551-560. doi: 10.11999/JEIT240735
引用本文: 陳雷, 楊吉斌, 曹鐵勇, 鄭云飛, 王楊, 張波, 林振華, 李文斌. 一種基于Transformer特征金字塔的自蒸餾目標(biāo)分割方法[J]. 電子與信息學(xué)報(bào), 2025, 47(2): 551-560. doi: 10.11999/JEIT240735
CHEN Lei, YANG Jibin, CAO Tieyong, ZHENG Yunfei, WANG Yang, ZHANG Bo, LIN Zhenhua, LI Wenbin. A Self-distillation Object Segmentation Method Based on Transformer Feature Pyramid[J]. Journal of Electronics & Information Technology, 2025, 47(2): 551-560. doi: 10.11999/JEIT240735
Citation: CHEN Lei, YANG Jibin, CAO Tieyong, ZHENG Yunfei, WANG Yang, ZHANG Bo, LIN Zhenhua, LI Wenbin. A Self-distillation Object Segmentation Method Based on Transformer Feature Pyramid[J]. Journal of Electronics & Information Technology, 2025, 47(2): 551-560. doi: 10.11999/JEIT240735

一種基于Transformer特征金字塔的自蒸餾目標(biāo)分割方法

doi: 10.11999/JEIT240735 cstr: 32379.14.JEIT240735
基金項(xiàng)目: 國(guó)家自然科學(xué)基金(61801512, 62071484),江蘇省優(yōu)秀青年基金(BK20180080),陸軍工程大學(xué)基礎(chǔ)前沿項(xiàng)目(KYZYJKQTZQ23001),國(guó)防科技大學(xué)2021年校立科研項(xiàng)目(ZK21-43)
詳細(xì)信息
    作者簡(jiǎn)介:

    陳雷:男,博士,助理研究員,研究方向?yàn)樯疃葘W(xué)習(xí)、計(jì)算機(jī)視覺(jué)

    楊吉斌:男,博士,副教授,研究方向?yàn)樯疃葘W(xué)習(xí)、信號(hào)處理

    曹鐵勇:男,博士,教授,研究方向?yàn)樯疃葘W(xué)習(xí)、信號(hào)處理

    鄭云飛:男,博士,講師,研究方向?yàn)樯疃葘W(xué)習(xí)、信號(hào)處理

    王楊:男,博士,研究方向?yàn)樯疃葘W(xué)習(xí)、計(jì)算機(jī)視覺(jué)

    張波:男,博士,講師,研究方向?yàn)樯疃葘W(xué)習(xí)、信號(hào)處理

    林振華:男,副研究員,研究方向?yàn)樾畔⑾到y(tǒng)工程

    李文斌:男,研究方向?yàn)橹笓]控制

    通訊作者:

    楊吉斌 yjbice@sina.com

  • 中圖分類號(hào): TN919.8; TP391.4

A Self-distillation Object Segmentation Method Based on Transformer Feature Pyramid

Funds: The National Natural Science Foundation of China (61801512, 62071484), Jiangsu Provincial Excellent Young Scientists Fund (BK20180080), The Army Engineering University of PLA Basic Frontier Project (KYZYJKQTZQ23001), The University of National Defense Science and Technology 2021 School Scientific Research Project (ZK21-43)
  • 摘要: 為在不增加網(wǎng)絡(luò)參數(shù)規(guī)模的情況下提升目標(biāo)分割性能,該文提出一種基于Transformer特征金字塔的自蒸餾目標(biāo)分割方法,提升了Transformer分割模型的實(shí)用性。首先,以Swin Transformer為主干網(wǎng)構(gòu)建了像素級(jí)的目標(biāo)分割模型;然后,設(shè)計(jì)了適合Transformer的蒸餾輔助分支,該分支由密集連接空間空洞金字塔(DenseASPP)、相鄰特征融合模塊(AFFM)和得分模塊構(gòu)建而成,通過(guò)自蒸餾方式指導(dǎo)主干網(wǎng)絡(luò)學(xué)習(xí)蒸餾知識(shí);最后,利用自上而下的學(xué)習(xí)策略指導(dǎo)模型學(xué)習(xí),以保證自蒸餾學(xué)習(xí)的一致性。實(shí)驗(yàn)表明,在4個(gè)公開(kāi)數(shù)據(jù)集上所提方法均能有效提升目標(biāo)分割精度,在偽裝目標(biāo)檢測(cè)(COD)數(shù)據(jù)集上比次優(yōu)的Transformer知識(shí)蒸餾(TKD)方法的Fβ值提高了約2.29%。
  • 圖  1  基于Transformer的自蒸餾目標(biāo)分割模型示意圖

    圖  2  DenseASPP結(jié)構(gòu)示意圖

    圖  3  AFFM結(jié)構(gòu)示意圖

    圖  4  得分模塊結(jié)構(gòu)示意圖

    圖  5  學(xué)習(xí)策略示意圖

    圖  6  不同目標(biāo)分割算法效果圖

    表  1  不同分割方法的分割結(jié)果(%)

    方法 COD DUT-O THUR SOC 平均值
    Fβ mIoU Fβ mIoU Fβ mIoU Fβ mIoU Fβ mIoU
    EMANet 63.07 26.42 78.38 59.86 82.60 62.70 86.83 71.63 74.02 51.61
    CCNet 64.44 41.27 79.70 63.15 84.80 70.10 87.27 77.79 74.90 56.91
    GateNet 65.81 46.11 82.22 70.04 87.59 78.60 88.20 79.71 78.40 64.33
    CPD 60.42 42.94 83.38 72.33 87.90 79.38 83.59 71.42 76.53 62.46
    DSR 54.68 36.25 80.63 66.83 84.04 72.25 82.44 73.04 69.69 55.24
    EDN 65.27 46.04 84.23 75.38 88.71 83.31 74.89 63.94 78.71 68.40
    POOL+ 61.55 45.39 82.95 70.84 85.25 74.74 87.92 79.39 79.42 67.59
    TAT 67.95 47.05 84.28 71.65 88.65 78.34 89.45 80.36 82.58 69.35
    TKD 68.46 46.83 83.96 71.27 88.86 78.35 89.35 80.06 82.66 69.13
    所提方法 70.03 47.86 85.34 71.87 89.54 79.78 89.64 81.34 83.64 70.21
    下載: 導(dǎo)出CSV

    表  2  不同自蒸餾方法的分割結(jié)果(%)

    方法CODDUT-0THURSOC平均值
    FβmIoUFβmIoUFβmIoUFβmIoUFβmIoU
    BL67.3446.0983.0368.2588.2477.5488.0379.3481.6667.81
    BL+DKS68.4547.2684.7870.3788.6278.5289.2680.5482.7869.17
    BL+BYOT68.3846.3285.0370.3488.5777.8388.3680.3782.5868.72
    BL+DHM67.5245.6784.2369.5389.3276.9788.7581.1382.4568.33
    BL+SA69.2146.2384.1669.3089.2478.2488.6980.2482.8368.50
    所提方法70.0347.8685.3471.8789.5479.7889.6481.3483.6470.21
    下載: 導(dǎo)出CSV

    表  3  不同目標(biāo)分割方法效率

    EMANet CCNet GateNet CPD DSR POOL+ TAT 所提方法
    參數(shù)(MB) 34.80 52.10 128.63 47.85 75.29 70.50 140.21 132.25
    速度(fps) 37.59 35.34 33.03 32.60 8.80 21.53 18.54 36.15
    下載: 導(dǎo)出CSV

    表  4  消融實(shí)驗(yàn)結(jié)果

    序號(hào) 自蒸餾模塊 學(xué)習(xí)策略 結(jié)果(%)
    DenseASPP AFFM 自上而下 Fβ mIoU
    1 × × × 67.34 46.09
    2 × × 67.53 46.28
    3 × 69.03 47.11
    4 × 68.34 46.84
    5 × 69.23 46.96
    6 70.03 47.86
    下載: 導(dǎo)出CSV
  • [1] 呂岳, 周浙泉, 呂淑靜. 基于雙層解耦策略和注意力機(jī)制的遮擋目標(biāo)分割[J]. 電子與信息學(xué)報(bào), 2023, 45(1): 335–343. doi: 10.11999/JEIT211288.

    Lü Yue, ZHOU Zhequan and Lü Shujing. Occluded object segmentation based on bilayer decoupling strategy and attention mechanism[J]. Journal of Electronics & Information Technology, 2023, 45(1): 335–343. doi: 10.11999/JEIT211288.
    [2] ZHENG Yunfei, ZHANG Xiongwei, WANG Feng, et al. Detection of people with camouflage pattern via dense deconvolution network[J]. IEEE Signal Processing Letters, 2019, 26(1): 29–33. doi: 10.1109/LSP.2018.2825959.
    [3] 任莎莎, 劉瓊. 小目標(biāo)特征增強(qiáng)圖像分割算法[J]. 電子學(xué)報(bào), 2022, 50(8): 1894–1904. doi: 10.12263/DZXB.20211123.

    REN Shasha and LIU Qiong. A tiny target feature enhancement algorithm for semantic segmentation[J]. Acta Electronica Sinica, 2022, 50(8): 1894–1904. doi: 10.12263/DZXB.20211123.
    [4] 梁新宇, 權(quán)冀川, 楊輝, 等. 多尺度特征提取和多層次注意力機(jī)制的迷彩偽裝目標(biāo)分割算法[J]. 計(jì)算機(jī)輔助設(shè)計(jì)與圖形學(xué)學(xué)報(bào), 2022, 34(5): 683–692. doi: 10.3724/SP.J.1089.2022.19000.

    LIANG Xinyu, QUAN Jichuan, YANG Hui, et al. Camouflage target segmentation algorithm using multi-scale feature extraction and multi-level attention mechanism[J]. Journal of Computer-Aided Design & Computer Graphics, 2022, 34(5): 683–692. doi: 10.3724/SP.J.1089.2022.19000.
    [5] LI Xiangtai, DING Henghui, YUAN Haobo, et al. Transformer-based visual segmentation: A survey[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2024, 46(12): 10138–10163. doi: 10.1109/TPAMI.2024.3434373.
    [6] LIU Ze, LIN Yutong, CAO Yue, et al. Swin transformer: Hierarchical vision transformer using shifted windows[C]. 2021 IEEE/CVF International Conference on Computer Vision, Montreal, Canada, 2021: 9992–10002. doi: 10.1109/ICCV48922.2021.00986.
    [7] CHEN Lei, CAO Tieyong, ZHENG Yunfei, et al. A self‐distillation object segmentation method via frequency domain knowledge augmentation[J]. IET Computer Vision, 2023, 17(3): 341–351. doi: 10.1049/cvi2.12170.
    [8] 邵仁榮, 劉宇昂, 張偉, 等. 深度學(xué)習(xí)中知識(shí)蒸餾研究綜述[J]. 計(jì)算機(jī)學(xué)報(bào), 2022, 45(8): 1638–1673. doi: 10.11897/SP.J.1016.2022.01638.

    SHAO Renrong, LIU Yuang, ZHANG Wei, et al. A survey of knowledge distillation in deep learning[J]. Chinese Journal of Computer, 2022, 45(8): 1638–1673. doi: 10.11897/SP.J.1016.2022.01638.
    [9] WU Di, CHEN Pengfei, YU Xuehui, et al. Spatial self-distillation for object detection with inaccurate bounding boxes[C]. 2023 IEEE/CVF International Conference on Computer Vision, Paris, France, 2023: 6832–6842. doi: 10.1109/ICCV51070.2023.00631.
    [10] LIN Sihao, XIE Hongwei, WANG Bing, et al. Knowledge distillation via the target-aware transformer[C]. 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition, New Orleans, USA, 2022: 10905–10914. doi: 10.1109/CVPR52688.2022.01064.
    [11] LIU Ruiping, YANG Kailun, ROITBERG A, et al. TransKD: Transformer knowledge distillation for efficient semantic segmentation[J]. IEEE Transactions on Intelligent Transportation Systems, 2024, 25(12): 20933–20949. doi: 10.1109/TITS.2024.3455416.
    [12] YANG Maoke, YU Kun, ZHANG Chi, et al. DenseASPP for semantic segmentation in street scenes[C]. 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, USA, 2018: 3684–3692. doi: 10.1109/CVPR.2018.00388.
    [13] ZHENG Yunfei, SUN Meng, WANG Xiaobing, et al. Self-distillation object segmentation via pyramid knowledge representation and transfer[J]. Multimedia Systems, 2023, 29(5): 2615–2631. doi: 10.1007/s00530-023-01121-x.
    [14] ZHANG Linfeng, SONG Jiebo, GAO Anni, et al. Be your own teacher: Improve the performance of convolutional neural networks via self‐distillation[C]. 2019 IEEE/CVF International Conference on Computer Vision, Seoul, Korea (South), 2019: 3712–3721. doi: 10.1109/ICCV.2019.00381.
    [15] CHENG Mingming, MITRA N J, HUANG Xiaolei, et al. SalientShape: Group saliency in image collections[J]. The Visual Computer, 2014, 30(4): 443–453. doi: 10.1007/s00371-013-0867-4.
    [16] ZHAI Qiang, LI Xin, YANG Fan, et al. Mutual graph learning for camouflaged object detection[C]. 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Nashville, USA 2021: 12992–13002. doi: 10.1109/CVPR46437.2021.01280.
    [17] WANG Yangtao, SHEN Xi, YUAN Yuan, et al. TokenCut: Segmenting objects in images and videos with self-supervised transformer and normalized cut[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2023, 45(12): 15790–15801. doi: 10.1109/TPAMI.2023.3305122.
    [18] KIRILLOV A, MINTUN E, RAVI N, et al. Segment anything[C]. 2023 IEEE/CVF International Conference on Computer Vision (ICCV), Paris, France, 2023: 3992–4003. doi: 10.1109/ICCV51070.2023.00371.
    [19] JI Wei, LI Jingjing, BI Qi, et al. Segment anything is not always perfect: An investigation of SAM on different real-world applications[J]. Machine Intelligence Research, 2024, 21(4): 617–630. doi: 10.1007/s11633-023-1385-0.
    [20] YANG Chuanguang, AN Zhulin, ZHOU Helong, et al. Online knowledge distillation via mutual contrastive learning for visual recognition[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2023, 45(8): 10212–10227. doi: 10.1109/TPAMI.2023.3257878.
    [21] CHEN Lei, CAO Tieyong, ZHENG Yunfei, et al. A non-negative feedback self-distillation method for salient object detection[J]. PeerJ Computer Science, 2023, 9: e1435. doi: 10.7717/peerj-cs.1435.
    [22] FAN Dengping, JI Gepeng, SUN Guolei, et al. Camouflaged object detection[C]. Proceedings of 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, USA, 2020: 2774–2784. doi: 10.1109/CVPR42600.2020.00285.
    [23] YANG Chuan, ZHANG Lihe, LU Huchuan, et al. Saliency detection via graph based manifold ranking[C]. 2013 IEEE Conference on Computer Vision and Pattern Recognition, Portland, USA, 2013: 3166–3173. doi: 10.1109/CVPR.2013.407.
    [24] FAN Dengping, CHENG Mingming, LIU Jiangjiang, et al. Salient objects in clutter: Bringing salient object detection to the foreground[C]. The 15th European Conference on Computer Vision, Munich, Germany, 2018: 186–202. doi: 10.1007/978-3-030-01267-0_12.
    [25] LI Xia, ZHONG Zhisheng, WU Jianlong, et al. Expectation‐maximization attention networks for semantic segmentation[C]. 2019 IEEE/CVF International Conference on Computer Vision, Seoul, Korea (South), 2019: 9166–9175. doi: 10.1109/ICCV.2019.00926.
    [26] HUANG Zilong, WANG Xinggang, HUANG Lichao, et al. CCNeT: Criss-cross attention for semantic segmentation[C]. Proceedings of 2019 IEEE/CVF International Conference on Computer Vision, Seoul, Korea (South), 2019: 603–612. doi: 10.1109/ICCV.2019.00069.
    [27] ZHAO Xiaoqi, PANG Youwei, ZHANG Lihe, et al. Suppress and balance: A simple gated network for salient object detection[C]. The 16th European Conference on Computer Vision, Glasgow, UK, 2020: 35–51. doi: 10.1007/978-3-030-58536-5_3.
    [28] WU Zhe, SU Li and HUANG Qingming. Cascaded partial decoder for fast and accurate salient object detection[C]. 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, USA, 2019: 3902–3911. doi: 10.1109/CVPR.2019.00403.
    [29] WANG Liansheng, CHEN Rongzhen, ZHU Lei, et al. Deep sub-region network for salient object detection[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2021, 31(2): 728–741. doi: 10.1109/TCSVT.2020.2988768.
    [30] WU Yuhuan, LIU Yun, ZHANG Le, et al. EDN: Salient object detection via extremely-downsampled network[J]. IEEE Transactions on Image Processing, 2022, 31: 3125–3136. doi: 10.1109/TIP.2022.3164550.
    [31] LIU Jiangjiang, HOU Qibin, LIU Zhiang, et al. PoolNet+: Exploring the potential of pooling for salient object detection[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2023, 45(1): 887–904. doi: 10.1109/TPAMI.2021.3140168.
    [32] HOU Yuenan, MA Zheng, LIU Chunxiao, et al. Learning lightweight lane detection CNNs by self‐attention distillation[C]. 2019 IEEE/CVF International Conference on Computer Vision, Seoul, Korea (South), 2019: 1013–1021. doi: 10.1109/ICCV.2019.00110.
    [33] SUN Dawei, YAO Anbang, ZHOU Aojun, et al. Deeply‐supervised knowledge synergy[C]. 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, USA, 2019: 6990–6999. doi: 10.1109/CVPR.2019.00716.
    [34] LI Duo and CHEN Qifeng. Dynamic hierarchical mimicking towards consistent optimization objectives[C]. 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, USA, 2020: 7639–7648. doi: 10.1109/CVPR42600.2020.00766.
  • 加載中
圖(6) / 表(4)
計(jì)量
  • 文章訪問(wèn)數(shù):  410
  • HTML全文瀏覽量:  221
  • PDF下載量:  91
  • 被引次數(shù): 0
出版歷程
  • 收稿日期:  2024-08-26
  • 修回日期:  2024-12-12
  • 網(wǎng)絡(luò)出版日期:  2024-12-20
  • 刊出日期:  2025-02-28

目錄

    /

    返回文章
    返回