一级黄色片免费播放|中国黄色视频播放片|日本三级a|可以直接考播黄片影视免费一级毛片

高級搜索

留言板

尊敬的讀者、作者、審稿人, 關(guān)于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復(fù)。謝謝您的支持!

姓名
郵箱
手機(jī)號碼
標(biāo)題
留言內(nèi)容
驗(yàn)證碼

STAR-RIS輔助URLLC-NOMA系統(tǒng)的聯(lián)合波束成形設(shè)計(jì)

朱建月 吳雨桐 陳曉 謝亞琴 許堯 張治中

朱建月, 吳雨桐, 陳曉, 謝亞琴, 許堯, 張治中. STAR-RIS輔助URLLC-NOMA系統(tǒng)的聯(lián)合波束成形設(shè)計(jì)[J]. 電子與信息學(xué)報(bào), 2025, 47(2): 409-417. doi: 10.11999/JEIT240717
引用本文: 朱建月, 吳雨桐, 陳曉, 謝亞琴, 許堯, 張治中. STAR-RIS輔助URLLC-NOMA系統(tǒng)的聯(lián)合波束成形設(shè)計(jì)[J]. 電子與信息學(xué)報(bào), 2025, 47(2): 409-417. doi: 10.11999/JEIT240717
ZHU Jianyue, WU Yutong, CHEN Xiao, XIE Yaqin, XU Yao, ZHANG Zhizhong. Joint Beamforming Design for STAR-RIS Assisted URLLC-NOMA System[J]. Journal of Electronics & Information Technology, 2025, 47(2): 409-417. doi: 10.11999/JEIT240717
Citation: ZHU Jianyue, WU Yutong, CHEN Xiao, XIE Yaqin, XU Yao, ZHANG Zhizhong. Joint Beamforming Design for STAR-RIS Assisted URLLC-NOMA System[J]. Journal of Electronics & Information Technology, 2025, 47(2): 409-417. doi: 10.11999/JEIT240717

STAR-RIS輔助URLLC-NOMA系統(tǒng)的聯(lián)合波束成形設(shè)計(jì)

doi: 10.11999/JEIT240717 cstr: 32379.14.JEIT240717
基金項(xiàng)目: 國家自然科學(xué)基金(62101273),江蘇省自然科學(xué)基金(BK20220439, BK20220438),江蘇省高等學(xué)?;A(chǔ)科學(xué)(自然科學(xué))研究面上項(xiàng)目(22KJB510005, 22KJB510033),江蘇省重點(diǎn)研發(fā)計(jì)劃(BE2023088),江蘇省雙創(chuàng)團(tuán)隊(duì)((2023)200008號)
詳細(xì)信息
    作者簡介:

    朱建月:女,講師,研究方向?yàn)槎嘀方尤爰夹g(shù)、大規(guī)模MIMO無線傳輸技術(shù)、無線資源管理等

    吳雨桐:女,學(xué)士,研究方向?yàn)槎嗵炀€傳輸技術(shù)、多址接入技術(shù)等

    陳曉:女,講師,研究方向?yàn)橹悄艹砻?、大?guī)模MIMO系統(tǒng)、基于深度學(xué)習(xí)通信技術(shù)等

    謝亞琴:女,副教授,研究方向?yàn)闊o線定位技術(shù)、衛(wèi)星導(dǎo)航、通信網(wǎng)絡(luò)規(guī)劃與優(yōu)化等

    許堯:男,講師,博士,研究方向?yàn)榉钦欢嘀方尤?、正交時(shí)頻空間調(diào)制等

    張治中:男,教授,博士,研究方向?yàn)橐苿?dòng)通信、通信網(wǎng)絡(luò)與測試技術(shù)等

    通訊作者:

    朱建月 zhujy@nuist.edu.cn

  • 中圖分類號: TN929.5

Joint Beamforming Design for STAR-RIS Assisted URLLC-NOMA System

Funds: The National Natural Science Foundation of China (62101273), The Natural Science Foundation of Jiangsu Province of China (BK20220439, BK20220438), The Natural Science Foundation of the Jiangsu Higher Education Institutions of China (22KJB510005, 22KJB510033), Jiangsu Provincial Key Research and Development Program (BE2023088), Jiangsu Provincial Innovation and Entrepreneurship Team ((2023)200008)
  • 摘要: 針對超可靠低時(shí)延通信(URLLC)場景,該文研究了融合透射與反射功能的智能超表面(STAR-RIS)輔助的非正交多址接入(NOMA)系統(tǒng)的傳輸設(shè)計(jì)。具體而言,該文聯(lián)合設(shè)計(jì)了基站端的波束成形向量、RIS端的透射相移矩陣和反射相移矩陣,以在滿足基站總功率約束的條件下實(shí)現(xiàn)能耗最小化。為解決所提出的非凸問題,該文首先分析了有限塊長傳輸下的用戶速率函數(shù)特性,并據(jù)此將優(yōu)化問題進(jìn)行等價(jià)轉(zhuǎn)換。隨后,采用交替優(yōu)化和半正定松弛(SDR)方法來解決聯(lián)合波束設(shè)計(jì)問題。實(shí)驗(yàn)結(jié)果表明,與正交多址接入和傳統(tǒng)RIS方案相比,所提出的方法在能耗性能上有顯著提升。
  • 圖  1  STAR-RIS輔助NOMA URLLC系統(tǒng)模型

    圖  2  在用戶不同的目標(biāo)數(shù)據(jù)速率下天線數(shù)量與傳輸功率的關(guān)系

    圖  3  在不同塊長$l$ 下天線數(shù)量與發(fā)射功率的關(guān)系

    圖  4  在不同解碼錯(cuò)誤概率$ \varepsilon $下天線數(shù)量與發(fā)射功率的關(guān)系

    圖  5  ${\beta _{\mathrm{r}}}$和${\beta _{\mathrm{t}}}$不同取值時(shí)天線數(shù)量與發(fā)射功率的關(guān)系

    1  主被動(dòng)波束成形聯(lián)合優(yōu)化設(shè)計(jì)算法

     1. 初始化:迭代次數(shù)iter=0,${\boldsymbol{\varTheta }}_{\mathrm{t}}^{(0)}$, ${\boldsymbol{\varTheta }}_{\mathrm{r}}^{(0)}$,臨界值$\eta \gt 0$;
     2. 重復(fù)步驟3–步驟4:
     3. 給定${\boldsymbol{\varTheta }}_{\mathrm{t}}^{({\text{iter}})}$, ${\boldsymbol{\varTheta }}_{\mathrm{r}}^{({\text{iter}})}$,通過求解問題式得到${\boldsymbol{w}}_i^*$,$i = 1,2$,
     令${\boldsymbol{w}}_i^{({\text{iter}})} = {\boldsymbol{w}}_i^*$,$i = 1,2$;
     4. 給定${\boldsymbol{w}}_i^{({\text{iter}})}$,$i = 1,2$,通過求解問題式得到${\boldsymbol{\varTheta }}_{\mathrm{t}}^*$和${\boldsymbol{\varTheta }}_{\mathrm{r}}^*$,令
     ${\boldsymbol{\varTheta }}_{\mathrm{t}}^{({\text{iter}})} = {\boldsymbol{\varTheta }}_{\mathrm{t}}^*$,${\boldsymbol{\varTheta }}_{\mathrm{r}}^{({\text{iter}})} = {\boldsymbol{\varTheta }}_{\mathrm{r}}^*$;
     5. 直到系統(tǒng)的最小功率收斂到精度$\eta $或達(dá)到指定的迭代次數(shù)。
    下載: 導(dǎo)出CSV
  • [1] DANG Shuping, AMIN O, SHIHADA B, et al. What should 6G be?[J]. Nature Electronics, 2020, 3(1): 20–29. doi: 10.1038/s41928-019-0355-6.
    [2] CHOWDHURY M Z, SHAHJALAL M, AHMED S, et al. 6G wireless communication systems: Applications, requirements, technologies, challenges, and research directions[J]. IEEE Open Journal of the Communications Society, 2020, 1: 957–975. doi: 10.1109/OJCOMS.2020.3010270.
    [3] CHENG Qiang, JIN Shi, CUI Tiejun. Reconfigurable intelligent surfaces for wireless communications[J]. Frontiers of Information Technology Electronic Engineering, 2023, 24(12): 1665–1668. doi: 10.1631/FITEE.2320000.
    [4] ZHAO Yajun. Reconfigurable intelligent surfaces for 6G: Applications, challenges, and solutions[J]. Frontiers of Information Technology & Electronic Engineering, 2023, 24(12): 1669–1688. doi: 10.1631/FITEE.2200666.
    [5] DING Zhiguo, LV Lu, FANG Fang, et al. A state-of-the-art survey on reconfigurable intelligent surface-assisted non-orthogonal multiple access networks[J]. Proceedings of the IEEE, 2022, 110(9): 1358–1379. doi: 10.1109/JPROC.2022.3174140.
    [6] HOU Tianwei, LIU Yuanwei, SONG Zhengyu, et al. Reconfigurable intelligent surface aided NOMA networks[J]. IEEE Journal on Selected Areas in Communications, 2020, 38(11): 2575–2588. doi: 10.1109/JSAC.2020.3007039.
    [7] YANG Gang, XU Xinyue, LIANG Yingchang, et al. Reconfigurable intelligent surface-assisted non-orthogonal multiple access[J]. IEEE Transactions on Wireless Communications, 2021, 20(5): 3137–3151. doi: 10.1109/TWC.2020.3047632.
    [8] ZHU Jianyue, HUANG Yongming, WANG Jiaheng, et al. Power efficient IRS-assisted NOMA[J]. IEEE Transactions on Communications, 2021, 69(2): 900–913. doi: 10.1109/TCOMM.2020.3029617.
    [9] WU Qingqing, ZHANG Shuowen, ZHENG Beixiong, et al. Intelligent reflecting surface-aided wireless communications: A tutorial[J]. IEEE transactions on Communications, 2021, 69(5): 3313–3351. doi: 10.1109/TCOMM.2021.3051897.
    [10] LIU Yuanwei, MU Xidong, XU Jiaqi, et al. STAR: Simultaneous transmission and reflection for 360° coverage by intelligent surfaces[J]. IEEE Wireless Communications, 2021, 28(6): 102–109. doi: 10.1109/MWC.001.2100191.
    [11] MU Xidong, LIU Yuanwei, GUO Li, et al. Simultaneously transmitting and reflecting (STAR) RIS aided wireless communications[J]. IEEE Transactions on Wireless Communications, 2022, 21(5): 3083–3098. doi: 10.1109/TWC.2021.3118225.
    [12] LIU Yuanwei, XU Jiaqi, WANG Zhaolin, et al. Simultaneously transmitting and reflecting (STAR) RISs for 6G: Fundamentals, recent advances, and future directions[J]. Frontiers of Information Technology & Electronic Engineering, 2023, 24(12): 1689–1707. doi: 10.1631/FITEE.2300490.
    [13] ZUO Jiakuo, LIU Yuanwei, DING Zhiguo, et al. Joint design for simultaneously transmitting and reflecting (STAR) RIS assisted NOMA systems[J]. IEEE Transactions on Wireless Communications, 2023, 22(1): 611–626. doi: 10.1109/TWC.2022.3197079.
    [14] WU Chenyu, LIU Yuanwei, MU Xidong, et al. Coverage characterization of STAR-RIS networks: NOMA and OMA[J]. IEEE Communications Letters, 2021, 25(9): 3036–3040. doi: 10.1109/LCOMM.2021.3091807.
    [15] GUO Yi, FANG Fang, CAI Donghong, et al. Energy-efficient design for a NOMA assisted STAR-RIS network with deep reinforcement learning[J]. IEEE Transactions on Vehicular Technology, 2023, 72(4): 5424–5428. doi: 10.1109/TVT.2022.3224926.
    [16] GAO Qiling, LIU Yuanwei, MU Xidong, et al. Joint location and beamforming design for STAR-RIS assisted NOMA systems[J]. IEEE Transactions on Communications, 2023, 71(4): 2532–2546. doi: 10.1109/TCOMM.2023.3247753.
    [17] 侯天為, 李潔, 王俊, 等. 非正交多址接入的同步透射反射智能超表面信號增強(qiáng)算法[J]. 北京郵電大學(xué)學(xué)報(bào), 2024, 47(1): 7–12. doi: 10.13190/j.jbupt.2022-279.

    HOU Tianwei, LI Jie, WANG Jun, et al. A signal enhancement algorithm for simultaneous-transmitting- and-reflecting reconfigurable intelligent surface based on non-orthogonal multiple access networks[J]. Journal of Beijing University of Posts and Telecommunications, 2024, 47(1): 7–12. doi: 10.13190/j.jbupt.2022-279.
    [18] YUE Chentao, MILOSLAVSKAYA V, SHIRVANIMOGHADDAM M, et al. Efficient decoders for short block length codes in 6G URLLC[J]. IEEE Communications Magazine, 2023, 61(4): 84–90. doi: 10.1109/MCOM.001.2200275.
    [19] DURISI G, KOCH T, and POPOVSKI P. Toward massive, ultrareliable, and low-latency wireless communication with short packets[J]. Proceedings of the IEEE, 2016, 104(9): 1711–1726. doi: 10.1109/JPROC.2016.2537298.
    [20] POLYANSKIY Y, POOR H V, and VERDú S. Channel coding rate in the finite blocklength regime[J]. IEEE Transactions on Information Theory, 2010, 56(5): 2307–2359. doi: 10.1109/TIT.2010.2043769.
    [21] HE Shiwen, AN Zhenyu, ZHU Jianyue, et al. Beamforming design for multiuser uRLLC with finite blocklength transmission[J]. IEEE Transactions on Wireless Communications, 2021, 20(12): 8096–8109. doi: 10.1109/TWC.2021.3090197.
    [22] SUTTON G J, ZENG Jie, LIU Renping, et al. Enabling technologies for ultra-reliable and low latency communications: From PHY and MAC layer perspectives[J]. IEEE Communications Surveys & Tutorials, 2019, 21(3): 2488–2524. doi: 10.1109/COMST.2019.2897800.
    [23] MAIGNAN A and SCOTT T C. Fleshing out the generalized Lambert W function[J]. ACM Communications in Computer Algebra, 2016, 50(2): 45–60. doi: 10.1145/2992274.2992275.
    [24] LUO Zhiquan, MA W K, SO A M C, et al. Semidefinite relaxation of quadratic optimization problems[J]. IEEE Signal Processing Magazine, 2010, 27(3): 20–34. doi: 10.1109/MSP.2010.936019.
    [25] GRIFFIN J D and DURGIN G D. Complete link budgets for backscatter-radio and RFID systems[J]. IEEE Antennas and Propagation Magazine, 2009, 51(2): 11–25. doi: 10.1109/MAP.2009.5162013.
  • 加載中
圖(5) / 表(1)
計(jì)量
  • 文章訪問數(shù):  260
  • HTML全文瀏覽量:  115
  • PDF下載量:  49
  • 被引次數(shù): 0
出版歷程
  • 收稿日期:  2024-08-19
  • 修回日期:  2025-02-14
  • 網(wǎng)絡(luò)出版日期:  2025-02-24
  • 刊出日期:  2025-02-28

目錄

    /

    返回文章
    返回