一级黄色片免费播放|中国黄色视频播放片|日本三级a|可以直接考播黄片影视免费一级毛片

高級搜索

留言板

尊敬的讀者、作者、審稿人, 關于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復。謝謝您的支持!

姓名
郵箱
手機號碼
標題
留言內容
驗證碼

可調制光學IRS輔助無蜂窩VLC網(wǎng)絡的接入資源管理算法

賈林瓊 馮事成 樂淑娟 施唯 束鋒

賈林瓊, 馮事成, 樂淑娟, 施唯, 束鋒. 可調制光學IRS輔助無蜂窩VLC網(wǎng)絡的接入資源管理算法[J]. 電子與信息學報, 2025, 47(2): 397-408. doi: 10.11999/JEIT240710
引用本文: 賈林瓊, 馮事成, 樂淑娟, 施唯, 束鋒. 可調制光學IRS輔助無蜂窩VLC網(wǎng)絡的接入資源管理算法[J]. 電子與信息學報, 2025, 47(2): 397-408. doi: 10.11999/JEIT240710
JIA Linqiong, FENG Shicheng, LE Shujuan, SHI Wei, SHU Feng. Joint Resource Management for Tunable Optical IRS-aided Cell-Free VLC Networks[J]. Journal of Electronics & Information Technology, 2025, 47(2): 397-408. doi: 10.11999/JEIT240710
Citation: JIA Linqiong, FENG Shicheng, LE Shujuan, SHI Wei, SHU Feng. Joint Resource Management for Tunable Optical IRS-aided Cell-Free VLC Networks[J]. Journal of Electronics & Information Technology, 2025, 47(2): 397-408. doi: 10.11999/JEIT240710

可調制光學IRS輔助無蜂窩VLC網(wǎng)絡的接入資源管理算法

doi: 10.11999/JEIT240710 cstr: 32379.14.JEIT240710
基金項目: 國家自然科學基金(62301257),江蘇省基礎研究計劃(自然科學基金)(BK20200488)
詳細信息
    作者簡介:

    賈林瓊:女,博士,副教授,研究方向為可見光通信、智能反射面和人工智能

    馮事成:男,研究方向為可見光通信和人工智能

    樂淑娟:女,研究方向為可見光通信

    施唯:女,研究方向為可見光通信

    束鋒:男,博士,教授,研究方向為無線通信、物理層安全和新一代智慧網(wǎng)絡等

    通訊作者:

    賈林瓊 jialinqiong@njust.edu.cn

  • 中圖分類號: TN926

Joint Resource Management for Tunable Optical IRS-aided Cell-Free VLC Networks

Funds: The National Natural Science Foundation of China (62301257), The Natural Science Foundation of Jiangsu Province (BK20200488)
  • 摘要: 該文研究了一種基于新型光學可調制智能超表面(IRS)輔助的無蜂窩可見光通信(VLC)網(wǎng)絡接入方案,其中IRS可以為收發(fā)端提供額外的反射信道,也可以利用反射系數(shù)可調制的特性,直接為網(wǎng)絡用戶提供無線接入。該文建立了可調制IRS輔助的無蜂窩VLC接入網(wǎng)絡的系統(tǒng)模型,推導了網(wǎng)絡吞吐量與發(fā)光二極管(LED)照明通信設備的工作模式、IRS的工作模式和用戶接入關聯(lián)之間的關系,并提出以最大化網(wǎng)絡吞吐量為目標的接入優(yōu)化問題。該優(yōu)化問題分兩步求解:(1) 當調制模式的LED數(shù)和調制模式的IRS數(shù)給定時,基于深度確定性策略梯度(DDPG)的深度強化學習(DRL)算法可以得到最優(yōu)的接入點工作模式和用戶接入關聯(lián)策略;(2) 遍歷可能的調制LED數(shù)和調制IRS元件數(shù)即可得到優(yōu)化問題的解。仿真結果表明,聯(lián)合優(yōu)化接入點的工作模式和用戶接入關聯(lián)矩陣可以提高IRS輔助無蜂窩VLC網(wǎng)絡的吞吐量。
  • 圖  1  可調制IRS輔助無蜂窩VLC 網(wǎng)絡示意圖

    圖  2  可調制IRS輔助無蜂窩VLC 網(wǎng)絡系統(tǒng)模型圖

    圖  3  基于DDPG的接入資源分配算法示意圖

    圖  4  DDPG-O和DDPG-N算法的收斂圖

    圖  5  不同的調制LED數(shù)對應的最大吞吐量

    圖  6  不同IRS元件數(shù)對應的網(wǎng)絡最大吞吐量

    圖  7  接入方案分析

    1  DDPG-O:基于DRL的可調制IRS輔助無蜂窩VLC網(wǎng)絡接入?yún)?shù)優(yōu)化

     1. 初始化:Actor網(wǎng)絡、Critic網(wǎng)絡、target-Actor網(wǎng)絡、target-
     Critic網(wǎng)絡的參數(shù)和梯度
     初始輸入:狀態(tài)${s_0}$、用于調制的LED數(shù)目$ M' $、用于反射的
     IRS數(shù)目$K'$
     輸出:系統(tǒng)用戶的和速率及對應的最優(yōu)策略$\{ {\boldsymbol{L}},{\boldsymbol{I}},{\boldsymbol{G}},{\boldsymbol{F}}\} $
     2. For episode$ \in $episodes do:
     3.  從Replay Buffer中隨機抽取初始狀態(tài)${\boldsymbol{{s}}_t}$,若Replay
       Buffer未準備好則采用${{\boldsymbol{s}}_0}$;初始化set=0;
     4.  For t $ \in $ Max steps do:
     5.   根據(jù)當前的狀態(tài)${{\boldsymbol{s}}_t}$,Actor網(wǎng)絡基于當前的策略
        $\pi ({{\boldsymbol{s}}_t},{{\boldsymbol{a}}_t})$輸出動作${{\boldsymbol{a}}_t}$
     6.   if set < 0:
         選擇高斯噪聲${{\boldsymbol{N}}_1}(0,\sigma _1^2)$,與動作${{\boldsymbol{a}}_t}$疊加
         ${{\boldsymbol{a}}_t}^\prime = {{\boldsymbol{a}}_t} + {{\boldsymbol{N}}_1}$
        else:
         選擇高斯噪聲${{\boldsymbol{N}}_2}(0,\sigma _2^2)$,與動作${{\boldsymbol{a}}_t}$疊加
         ${{\boldsymbol{a}}_t}^\prime = {{\boldsymbol{a}}_t} + {{\boldsymbol{N}}_2}$
     7.  根據(jù)動作${{\boldsymbol{a}}_t}^\prime $,與環(huán)境交互,獲得獎勵${r_t}$、下一時刻狀態(tài)
        ${{\boldsymbol{s}}_{t + 1}}$
     8.  if ${r_t}$< 0,以概率$\varsigma $將其儲存到Replay Buffer;else 直接存
        入Replay Buffer
     9.  若Replay Buffer準備好,抽取Batch size個元組
        $({{\boldsymbol{s}}_t},{{\boldsymbol{a}}_t},{{\boldsymbol{s}}_{t + 1}},{r_t})$使智能體進行學習,通過梯度反向傳播
        更新Actor網(wǎng)絡和Critic網(wǎng)絡的參數(shù);若未準備好則只存儲
        本次獲得的元組$({{\boldsymbol{s}}_t},{{\boldsymbol{a}}_t},{{\boldsymbol{s}}_{t + 1}},{r_t})$。
     10.  軟更新target-Actor網(wǎng)絡參數(shù)、target-Critic網(wǎng)絡的參數(shù)
     11.  計算近$\eta $次與環(huán)境交互獲得的獎勵$\bar r$,${\mathrm{set}} = \bar r$
     12.  ${{\boldsymbol{s}}_t} = {{\boldsymbol{s}}_{t + 1}}$
     13. end for
     14. end for
    下載: 導出CSV

    表  1  系統(tǒng)模型仿真參數(shù)列表

    參數(shù) 參數(shù)
    LED個數(shù) $ M = 4 $ 朗伯系數(shù) $m = 1$
    IRS個數(shù) $ K = 16 $ PD視場角 ${\text{FoV}} = {70^ \circ }$
    PD個數(shù) $ N = 5 $ 增益函數(shù) $g = 1$
    調制LED個數(shù) $ 0 \le M' \le M $ 內部反射常數(shù) ${n_{\mathrm{r}}} = 1.5$
    調制IRS個數(shù) $ 0 \le K' \le K $ 頻帶寬度 $W = 2 \times {10^8}\;{\text{Hz}}$
    PD面積 $ 1\;{\text{c}}{{\text{m}}^2} $ 調光功率 $A = 5$
    最大反射系數(shù) $\alpha = 0.9$ 調光系數(shù) $\xi = 0.5$
    噪聲功率 ${\sigma ^2} = 1 \times {10^{ - 21}}$ PD響應率 $\rho = 0.5$
    下載: 導出CSV

    表  2  DDPG-O算法參數(shù)設置

    參數(shù) 參數(shù)
    BufferSize 100 000 噪聲系數(shù)1 ${\sigma _1} = 0.15$
    Batchsize $ B = 32 $ 噪聲系數(shù)2 ${\sigma _2} = 0.08$
    隱藏層神經(jīng)元數(shù)目1 $ {H_1} = 880 $ 價值衰減常數(shù) $\gamma = 0.98$
    隱藏層神經(jīng)元數(shù)目2 $ {H_2} = 600 $ 策略網(wǎng)絡學習率 ${l_{{\mathrm{Policy}}}} = 1 \times {10^{ - 3}}$
    策略網(wǎng)絡深度 $ {D_P} = 1 $ 價值網(wǎng)絡學習率 ${l_{{\mathrm{Critic}}}} = 1 \times {10^{ - 2}}$
    值網(wǎng)絡深度 ${D_C} = 2$ 軟更新常數(shù) $\tau = 0.000\;01$
    丟棄率 $\zeta = 0.85$ 仿真周期 $E = 1\;000$
    噪聲切換長度 $\eta = 6$ 最大步數(shù) $s = 100$
    下載: 導出CSV
  • [1] LIU Guangyi, HUANG Yuhong, LI Na, et al. Vision, requirements and network architecture of 6G mobile network beyond 2030[J]. China Communications, 2020, 17(9): 92–104. doi: 10.23919/JCC.2020.09.008.
    [2] SUN Shiyuan, YANG Fang, SONG Jian, et al. Intelligent reflecting surface for MIMO VLC: Joint design of surface configuration and transceiver signal processing[J]. IEEE Transactions on Wireless Communications, 2023, 22(9): 5785–5799. doi: 10.1109/TWC.2023.3236811.
    [3] ABUMARSHOUD H, MOHJAZI L, DOBRE O A, et al. LiFi through reconfigurable intelligent surfaces: A new frontier for 6G?[J]. IEEE Vehicular Technology Magazine, 2022, 17(1): 37–46. doi: 10.1109/MVT.2021.3121647.
    [4] 張在琛, 江浩. 智能超表面使能無人機高能效通信信道建模與傳輸機理分析[J]. 電子學報, 2023, 51(10): 2623–2634. doi: 10.12263/DZXB.20221352.

    ZHANG Zaichen and JIANG Hao. Channel modeling and characteristics analysis for high energy-efficient RIS-assisted UAV communications[J]. Acta Electronica Sinica, 2023, 51(10): 2623–2634. doi: 10.12263/DZXB.20221352.
    [5] QIAN Lei, CHI Xuefen, ZHAO Linlin, et al. Secure visible light communications via intelligent reflecting surface[C]. Proceedings of 2021 IEEE International Conference on Communications, Montreal, Canada, 2021: 1–6. doi: 10.1109/ICC42927.2021.9500409.
    [6] QIAN Lei, ZHAO Linlin, HUANG Nuo, et al. Security enhancement by intelligent reflecting surfaces for visible light communications[J]. Optics Communications, 2024, 570: 130851. doi: 10.1016/j.optcom.2024.130851.
    [7] ABDELHADY A M, SALEM A K S, AMIN O, et al. Visible light communications via intelligent reflecting surfaces: Metasurfaces vs mirror arrays[J]. IEEE Open Journal of the Communications Society, 2021, 2: 1–20. doi: 10.1109/OJCOMS.2020.3041930.
    [8] SUN Shiyuan, YANG Fang, SONG Jian, et al. Joint resource management for intelligent reflecting surface–aided visible light communications[J]. IEEE Transactions on Wireless Communications, 2022, 21(8): 6508–6522. doi: 10.1109/TWC.2022.3150021.
    [9] HAMMADI A A, BARIAH L, MUHAIDAT S, et al. Deep Q-learning-based resource management in IRS-assisted VLC systems[J]. IEEE Transactions on Machine Learning in Communications and Networking, 2024, 2: 34–48. doi: 10.1109/TMLCN.2023.3328501.
    [10] ULLAH N, ZHAO Ruizhe, and HUANG Lingling. Recent advancement in optical metasurface: Fundament to application[J]. Micromachines, 2022, 13(7): 1025. doi: 10.3390/mi13071025.
    [11] HE Tao, LIU Tong, XIAO Shiyi, et al. Perfect anomalous reflectors at optical frequencies[J]. Science Advances, 2022, 8(9): eabk3381. doi: 10.1126/sciadv.abk3381.
    [12] BHOWMIK T, CHOWDHARY A K, and SIKDAR D. Polarization- and angle-insensitive tunable metasurface for electro-optic modulation[J]. IEEE Photonics Technology Letters, 2023, 35(16): 879–882. doi: 10.1109/LPT.2023.3256584.
    [13] JIA Linqiong, WANG Qikai, and ZHANG Yijin. Joint constellation and reflectance optimization for tunable intelligent reflecting surface-aided VLC systems[J]. Photonics, 2024, 11(9): 840. doi: 10.3390/photonics11090840.
    [14] LI Qian, SHANG Tao, TANG Tang, et al. Adaptive user association scheme for indoor multi-user NOMA-VLC systems[J]. IEEE Wireless Communications Letters, 2023, 12(5): 873–877. doi: 10.1109/LWC.2023.3247420.
    [15] 尤肖虎, 王東明, 王江舟. 分布式MIMO與無蜂窩移動通信[M]. 北京: 科學出版社, 2019: 12.

    YOU Xiaohu, WANG Dongming, and WANG Jiangzhou. Distributed MIMO and Cell-Free Mobile Communication[M]. Beijing: Science Press, 2019: 12.
    [16] 朱秋明, 倪浩然, 華博宇, 等. 無人機毫米波信道測量與建模研究綜述[J]. 移動通信, 2022, 46(12): 1–11. doi: 10.3969/j.issn.1006-1010.20221114-0001.

    ZHU Qiuming, NI Haoran, HUA Boyu, et al. A survey of UAV millimeter-wave channel measurement and modeling[J]. Mobile Communications, 2022, 46(12): 1–11. doi: 10.3969/j.issn.1006-1010.20221114-0001.
    [17] SHEHAB M, CIFTLER B S, KHATTAB T, et al. Deep reinforcement learning powered IRS-assisted downlink NOMA[J]. IEEE Open Journal of the Communications Society, 2022, 3: 729–739. doi: 10.1109/OJCOMS.2022.3165590.
    [18] JIA Linqiong, SHU Feng, HUANG Nuo, et al. Capacity and optimum signal constellations for VLC systems[J]. Journal of Lightwave Technology, 2020, 38(8): 2180–2189. doi: 10.1109/JLT.2020.2971273.
    [19] WANG Junbo, HU Qingsong, WANG Jiangzhou, et al. Tight bounds on channel capacity for dimmable visible light communications[J]. Journal of Lightwave Technology, 2013, 31(23): 3771–3779. doi: 10.1109/JLT.2013.2286088.
    [20] HORNIK K, STINCHCOMBE M, and WHITE H. Multilayer feedforward networks are universal approximators[J]. Neural Networks, 1989, 2(5): 359–366. doi: 10.1016/0893-6080(89)90020-8.
  • 加載中
圖(7) / 表(3)
計量
  • 文章訪問數(shù):  251
  • HTML全文瀏覽量:  93
  • PDF下載量:  42
  • 被引次數(shù): 0
出版歷程
  • 收稿日期:  2024-08-15
  • 修回日期:  2024-12-27
  • 網(wǎng)絡出版日期:  2025-01-09
  • 刊出日期:  2025-02-28

目錄

    /

    返回文章
    返回