一级黄色片免费播放|中国黄色视频播放片|日本三级a|可以直接考播黄片影视免费一级毛片

高級搜索

留言板

尊敬的讀者、作者、審稿人, 關(guān)于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復(fù)。謝謝您的支持!

姓名
郵箱
手機(jī)號碼
標(biāo)題
留言內(nèi)容
驗(yàn)證碼

面向信息新鮮度保障的車聯(lián)網(wǎng)功率控制和資源分配策略

楊鵬 康一銘 楊靜 唐桐 祝志遠(yuǎn) 吳大鵬

楊鵬, 康一銘, 楊靜, 唐桐, 祝志遠(yuǎn), 吳大鵬. 面向信息新鮮度保障的車聯(lián)網(wǎng)功率控制和資源分配策略[J]. 電子與信息學(xué)報(bào), 2025, 47(2): 498-509. doi: 10.11999/JEIT240698
引用本文: 楊鵬, 康一銘, 楊靜, 唐桐, 祝志遠(yuǎn), 吳大鵬. 面向信息新鮮度保障的車聯(lián)網(wǎng)功率控制和資源分配策略[J]. 電子與信息學(xué)報(bào), 2025, 47(2): 498-509. doi: 10.11999/JEIT240698
YANG Peng, KANG Yiming, YANG Jing, TANG Tong, ZHU Zhiyuan, WU Dapeng. Power Control and Resource Allocation Strategy for Information Freshness Guarantee in Internet of Vehicles[J]. Journal of Electronics & Information Technology, 2025, 47(2): 498-509. doi: 10.11999/JEIT240698
Citation: YANG Peng, KANG Yiming, YANG Jing, TANG Tong, ZHU Zhiyuan, WU Dapeng. Power Control and Resource Allocation Strategy for Information Freshness Guarantee in Internet of Vehicles[J]. Journal of Electronics & Information Technology, 2025, 47(2): 498-509. doi: 10.11999/JEIT240698

面向信息新鮮度保障的車聯(lián)網(wǎng)功率控制和資源分配策略

doi: 10.11999/JEIT240698 cstr: 32379.14.JEIT240698
基金項(xiàng)目: 國家自然科學(xué)基金(U24A20211, 62271096, U20A20157),重慶市自然科學(xué)基金(CSTB2023NSCQ-LZX0134, CSTB2024NSCQ-LZX0124),重慶市高校創(chuàng)新研究群體項(xiàng)目(CXQT20017),重郵信通青創(chuàng)團(tuán)隊(duì)支持計(jì)劃(SCIE-QN-2022-04)
詳細(xì)信息
    作者簡介:

    楊鵬:男,高級工程師,研究方向?yàn)闃?biāo)識解析、工業(yè)軟件數(shù)據(jù)集成

    康一銘:男,碩士生,研究方向?yàn)檐嚶?lián)網(wǎng)資源管理

    楊靜:女,高級工程師,研究方向?yàn)闊o線通信網(wǎng)絡(luò)、物聯(lián)網(wǎng)技術(shù)等

    唐桐:男,講師,研究方向?yàn)橐曨l編碼傳輸?shù)?/p>

    祝志遠(yuǎn):男,講師,研究方向?yàn)榭尚胚吘売?jì)算

    吳大鵬:男,教授,研究方向?yàn)榉涸跓o線網(wǎng)絡(luò)、社會(huì)計(jì)算等

    通訊作者:

    吳大鵬 wudp@cqupt.edu.cn

  • 中圖分類號: TN929.5

Power Control and Resource Allocation Strategy for Information Freshness Guarantee in Internet of Vehicles

Funds: The National Natural Science Foundation of China (U24A20211, 62271096, U20A20157), The Natural Science Foundation of Chongqing (CSTB2023NSCQ-LZX0134, CSTB2024NSCQ-LZX0124), The University Innovation Research Group Project of Chongqing (CXQT20017), The Youth Innovation Group Support Program of ICE Discipline of CQUPT (SCIE-QN-2022-04)
  • 摘要: 在差異化服務(wù)共存的車聯(lián)網(wǎng)場景中,針對基于平均信息年齡(AoI)優(yōu)化無法降低極端事件發(fā)生概率的問題,該文提出一種信息新鮮度保障的用戶功率控制和資源分配策略。首先,根據(jù)系統(tǒng)模型刻畫出車輛到車輛(V2V)用戶狀態(tài)更新信息新鮮度約束下最大化車輛到基站(V2I)用戶體驗(yàn)質(zhì)量(QoE)的問題。然后,結(jié)合與AoI中斷約束等價(jià)的隊(duì)列積壓約束,并引入極值理論以優(yōu)化AoI尾部分布。接著,基于李雅普諾夫優(yōu)化方法將原問題轉(zhuǎn)化最小化李雅普諾夫漂移加懲罰函數(shù)的問題,在此基礎(chǔ)上求解最優(yōu)的用戶發(fā)射功率。最后,在構(gòu)建超圖的基礎(chǔ)上,提出了一種基于遺傳算法改進(jìn)粒子群算法(GA-PSO)的資源分配策略確定最優(yōu)的用戶信道復(fù)用方式。仿真結(jié)果表明,相比于基準(zhǔn)方案,所提方案能夠在降低V2V鏈路AoI中斷的極端事件發(fā)生概率的同時(shí),提高約7.03%的V2I鏈路信道容量,實(shí)現(xiàn)V2I用戶平均QoE提升。
  • 圖  1  系統(tǒng)模型

    圖  2  V2I-Channel-V2V 3維匹配圖

    圖  3  GA-PSO算法流程

    圖  4  不同算法下所有V2I用戶平均QoE的CDF對比

    圖  5  不同車速下所有V2I用戶的平均QoE對比

    圖  6  所提算法與基準(zhǔn)算法AoI的CCDF對比

    圖  7  所提算法與基準(zhǔn)算法信標(biāo)積壓的CCDF對比

    圖  8  不同車速下AoI 的CCDF對比

    圖  9  狀態(tài)更新到達(dá)率與AoI的權(quán)衡

    表  1  仿真參數(shù)

    參數(shù) 取值
    載波頻率 2 GHz
    帶寬 10 MHz
    基站覆蓋半徑 500 m
    基站與公路距離 35 m
    車道寬度 4 m
    車輛天線高度 1.5 m
    車輛天線增益 3 dBi
    基站接收機(jī)噪聲 5 dB
    車輛接收機(jī)噪聲 9 dB
    V2I鏈路最大發(fā)射功率 23 dBm
    V2V鏈路最大發(fā)射功率 23 dBm
    V2V車輛收發(fā)距離 15 m
    噪聲功率 –114 dBm
    車速 60 km/h
    時(shí)隙長度 3 ms
    最大可容忍AoI 60 ms
    AoI中斷概率閾值 0.001
    狀態(tài)更新到達(dá)率 125 update/s
    每個(gè)信標(biāo)數(shù)據(jù)量大小 500 Byte
    下載: 導(dǎo)出CSV
  • [1] MLIKA Z and CHERKAOUI S. Deep deterministic policy gradient to minimize the age of information in cellular V2X communications[J]. IEEE Transactions on Intelligent Transportation Systems, 2022, 23(12): 23597–23612. doi: 10.1109/TITS.2022.3190799.
    [2] CLANCY J, MULLINS D, DEEGAN B, et al. Wireless access for V2X communications: Research, challenges and opportunities[J]. IEEE Communications Surveys & Tutorials, 2024, 26(3): 2082–2119. doi: 10.1109/COMST.2024.3384132.
    [3] Juniper Research. Connected vehicles: Operator opportunities, competitor leaderboard & market forecasts[EB/OL]. https://www.juniperresearch.com/research/telco-connectivity/operator-strategies/connected-vehicles-research-report, 2023.
    [4] FU Qiang, LIU Jiajia, and WANG Jiadai. A flexible resource allocation scheme for NR V2X based vulnerable road user protection[J]. IEEE Transactions on Vehicular Technology, 2024, 73(5): 6672–6686. doi: 10.1109/TVT.2023.3340655.
    [5] GUO Chongtao, LIANG Le, and LI G Y. Resource allocation for low-latency vehicular communications: An effective capacity perspective[J]. IEEE Journal on Selected Areas in Communications, 2019, 37(4): 905–917. doi: 10.1109/JSAC.2019.2898743.
    [6] 許耀華, 王慧平, 王貴竹, 等. 基于圖著色和三維匹配的車聯(lián)網(wǎng)資源分配算法[J]. 系統(tǒng)工程與電子技術(shù), 2023, 45(3): 869–875. doi: 10.12305/j.issn.1001-506X.2023.03.29.

    XU Yaohua, WANG Huiping, WANG Guizhu, et al. Resource allocation algorithm for internet of vehicles based on graph coloring and three-dimensional matching[J]. Systems Engineering and Electronics, 2023, 45(3): 869–875. doi: 10.12305/j.issn.1001-506X.2023.03.29.
    [7] 韓珍珍, 周末, 劉恩慧, 等. 基于用戶個(gè)性化服務(wù)質(zhì)量的蜂窩車聯(lián)網(wǎng)與車載自組織網(wǎng)異構(gòu)車聯(lián)網(wǎng)資源分配方法[J]. 電子與信息學(xué)報(bào), 2021, 43(5): 1339–1348. doi: 10.11999/JEIT200429.

    HAN Zhenzhen, ZHOU Mo, LIU Enhui, et al. A personalized QoS-based resource allocation for cellular-vehicle to everything network and vehicle ad-hoc network heterogeneous vehicular network[J]. Journal of Electronics & Information Technology, 2021, 43(5): 1339–1348. doi: 10.11999/JEIT200429.
    [8] 中國信息通信研究院. 車聯(lián)網(wǎng)白皮書(2022年)[R]. 北京: 中國信息通信研究院, 2023.
    [9] 林志堅(jiān), 侯映, 曹曉曉, 等. 車聯(lián)網(wǎng)中基于信息年齡價(jià)值的邊緣緩存策略[J]. 電子學(xué)報(bào), 2023, 51(12): 3410–3421. doi: 10.12263/DZXB.20221409.

    LIN Zhijian, HOU Ying, CAO Xiaoxiao, et al. Edge caching scheme based on value of information age in the internet of vehicles[J]. Acta Electronica Sinica, 2023, 51(12): 3410–3421. doi: 10.12263/DZXB.20221409.
    [10] YU Baoquan, CAI Yueming, WU Dan, et al. Average age of information in short packet based machine type communication[J]. IEEE Transactions on Vehicular Technology, 2020, 69(9): 10306–10319. doi: 10.1109/TVT.2020.3004828.
    [11] KADOTA I and MODIANO E. Minimizing the age of information in wireless networks with stochastic arrivals[J]. IEEE Transactions on Mobile Computing, 2021, 20(3): 1173–1185. doi: 10.1109/TMC.2019.2959774.
    [12] KIM M, KIM J, KIM T, et al. Age of information based beacon transmission for reducing status update delay in platooning[J]. IEEE Transactions on Vehicular Technology, 2022, 71(10): 11306–11310. doi: 10.1109/TVT.2022.3185979.
    [13] QIN Xiaoqi, XIA Yangyang, LI Hang, et al. Distributed data collection in age-aware vehicular participatory sensing networks[J]. IEEE Internet of Things Journal, 2021, 8(19): 14501–14513. doi: 10.1109/JIOT.2021.3049999.
    [14] PENG Nuoheng, LIN Yan, ZHANG Yijin, et al. AoI-aware joint spectrum and power allocation for internet of vehicles: A trust region policy optimization-based approach[J]. IEEE Internet of Things Journal, 2022, 9(20): 19916–19927. doi: 10.1109/JIOT.2022.3172472.
    [15] WANG Jian, CAO Tengfei, WANG Xiaoying, et al. Resource scheduling in vehicular networks with age of information and channel awareness[C]. 2022 IEEE/CIC International Conference on Communications in China (ICCC), Foshan, China, 2022: 344–349. doi: 10.1109/ICCC55456.2022.9880785.
    [16] HAAN L and FERREIRA A. Extreme Value Theory: An Introduction[M]. New York: Springer, 2006. doi: 10.1007/0-387-34471-3.
    [17] CHAMPATI J, AL-ZUBAIDY H, and GROSS J. Statistical guarantee optimization for age of information for the D/G/1 queue[C]. IEEE Conference on Computer Communications Workshops (INFOCOM WKSHPS), Honolulu, HI, USA, 2018: 130–135. doi: 10.1109/INFCOMW.2018.8406909.
    [18] ABDEL-AZIZ M K, LIU Chenfeng, SAMARAKOON S, et al. Ultra-reliable low-latency vehicular networks: Taming the age of information tail[C]. 2018 IEEE Global Communications Conference (GLOBECOM), Abu Dhabi, United Arab Emirates, 2018: 1–7. doi: 10.1109/GLOCOM.2018.8647466.
    [19] NEELY M J. Stochastic Network Optimization with Application to Communication and Queueing Systems[M]. Cham: Springer, 2010: 1–211. doi: 10.1007/978-3-031-79995-2.
    [20] 程前. 基于NOMA的車聯(lián)網(wǎng)V2X功率控制研究[D]. [碩士論文], 北方工業(yè)大學(xué), 2021. doi: 10.26926/d.cnki.gbfgu.2021.000491.

    CHENG Qian. Research on V2X power control of vehicle networking based on NOMA[D]. [Master dissertation], North China University of Technology, 2021. doi: 10.26926/d.cnki.gbfgu.2021.000491.
    [21] 3GPP. 3GPP TR 36.885 Study on LTE-based V2X services[S]. Sophia Antipolis: 3GPP Organizational Partners, 2016.
    [22] SUN Wanlu, YUAN Di, STR?M E G, et al. Cluster-based radio resource management for D2D-supported safety-critical V2X communications[J]. IEEE Transactions on Wireless Communications, 2016, 15(4): 2756–2769. doi: 10.1109/TWC.2015.2509978.
    [23] LIANG Le, XIE Shijie, LI G Y, et al. Graph-based resource sharing in vehicular communication[J]. IEEE Transactions on Wireless Communications, 2018, 17(7): 4579–4592. doi: 10.1109/TWC.2018.2827958.
    [24] LIU Chenfeng and BENNIS M. Ultra-reliable and low-latency vehicular transmission: An extreme value theory approach[J]. IEEE Communications Letters, 2018, 22(6): 1292–1295. doi: 10.1109/LCOMM.2018.2828407.
  • 加載中
圖(9) / 表(1)
計(jì)量
  • 文章訪問數(shù):  319
  • HTML全文瀏覽量:  149
  • PDF下載量:  41
  • 被引次數(shù): 0
出版歷程
  • 收稿日期:  2024-08-06
  • 修回日期:  2025-01-02
  • 網(wǎng)絡(luò)出版日期:  2025-01-17
  • 刊出日期:  2025-02-28

目錄

    /

    返回文章
    返回