一级黄色片免费播放|中国黄色视频播放片|日本三级a|可以直接考播黄片影视免费一级毛片

高級搜索

留言板

尊敬的讀者、作者、審稿人, 關(guān)于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復(fù)。謝謝您的支持!

姓名
郵箱
手機號碼
標(biāo)題
留言內(nèi)容
驗證碼

面向物聯(lián)網(wǎng)的云邊端協(xié)同計算中任務(wù)卸載與資源分配算法研究

施建鋒 陳忻陽 李寶龍

施建鋒, 陳忻陽, 李寶龍. 面向物聯(lián)網(wǎng)的云邊端協(xié)同計算中任務(wù)卸載與資源分配算法研究[J]. 電子與信息學(xué)報, 2025, 47(2): 458-469. doi: 10.11999/JEIT240659
引用本文: 施建鋒, 陳忻陽, 李寶龍. 面向物聯(lián)網(wǎng)的云邊端協(xié)同計算中任務(wù)卸載與資源分配算法研究[J]. 電子與信息學(xué)報, 2025, 47(2): 458-469. doi: 10.11999/JEIT240659
SHI Jianfeng, CHEN Xinyang, LI Baolong. Research on Task Offloading and Resource Allocation Algorithms in Cloud-edge-end Collaborative Computing for the Internet of Things[J]. Journal of Electronics & Information Technology, 2025, 47(2): 458-469. doi: 10.11999/JEIT240659
Citation: SHI Jianfeng, CHEN Xinyang, LI Baolong. Research on Task Offloading and Resource Allocation Algorithms in Cloud-edge-end Collaborative Computing for the Internet of Things[J]. Journal of Electronics & Information Technology, 2025, 47(2): 458-469. doi: 10.11999/JEIT240659

面向物聯(lián)網(wǎng)的云邊端協(xié)同計算中任務(wù)卸載與資源分配算法研究

doi: 10.11999/JEIT240659 cstr: 32379.14.JEIT240659
基金項目: 國家自然科學(xué)基金(62201274, 62201275),江蘇省自然科學(xué)基金(BK20210641)
詳細(xì)信息
    作者簡介:

    施建鋒:男,副教授,研究方向為空天地一體化網(wǎng)絡(luò)、用戶為中心網(wǎng)絡(luò)、B5G和6G網(wǎng)絡(luò)

    陳忻陽:男,碩士生,研究方向為物聯(lián)網(wǎng)、衛(wèi)星邊緣計算、資源分配

    李寶龍:男,副教授,研究方向為無線光通信、數(shù)據(jù)管理、物聯(lián)網(wǎng)

    通訊作者:

    施建鋒 jianfeng.shi@nuist.edu.cn

  • 中圖分類號: TN927

Research on Task Offloading and Resource Allocation Algorithms in Cloud-edge-end Collaborative Computing for the Internet of Things

Funds: The National Natural Science Foundation of China (62201274, 62201275), The Natural Science Foundation of Jiangsu Province (BK20210641)
  • 摘要: 為滿足遠(yuǎn)郊和災(zāi)區(qū)物聯(lián)網(wǎng)(IoT)設(shè)備的時延與能耗需求,該文構(gòu)建了由IoT終端、低地球軌道(LEO)衛(wèi)星和云計算中心組成的新型動態(tài)衛(wèi)星物聯(lián)網(wǎng)模型。在時延、能耗等實際約束條件下,將系統(tǒng)時延與能耗加權(quán)和視為系統(tǒng)開銷,構(gòu)造了最小化系統(tǒng)開銷的任務(wù)卸載、功率和計算資源聯(lián)合分配問題。針對動態(tài)任務(wù)到達(dá)場景,提出一種模型輔助的自適應(yīng)深度強化學(xué)習(xí)(MADRL)算法,實現(xiàn)任務(wù)卸載決策、通信資源和計算資源的聯(lián)合配置。該算法將問題分為兩部分解決,第1部分通過模型輔助、二分搜索算法和梯度下降法優(yōu)化了通信資源與計算資源;第2部分通過自適應(yīng)深度強化學(xué)習(xí)算法訓(xùn)練出Q網(wǎng)絡(luò)以適應(yīng)隨機任務(wù)的到達(dá),進行卸載決策優(yōu)化。該算法實現(xiàn)了有效的資源分配和可靠及時的任務(wù)卸載決策,且在降低系統(tǒng)開銷方面表現(xiàn)出優(yōu)異的效果。仿真結(jié)果表明,引入衛(wèi)星的移動性,使得系統(tǒng)開銷降低了41%。引入星間協(xié)作技術(shù),使系統(tǒng)開銷降低了22.1%。此外,該文所提算法收斂性能好。與基準(zhǔn)算法相比,該算法的系統(tǒng)開銷降低了3%,在不同環(huán)境下的性能表現(xiàn)都是最優(yōu)。
  • 圖  1  LEO衛(wèi)星s與設(shè)備m之間的幾何關(guān)系

    圖  2  MADRL 算法流程圖

    圖  3  不同學(xué)習(xí)率下的收斂性能

    圖  4  不同學(xué)習(xí)率下的系統(tǒng)累積開銷

    圖  5  不同衰減因子下的系統(tǒng)累積開銷

    圖  6  衛(wèi)星移動性對DQN, MADRL算法性能的影響

    圖  7  ISC對DQN, MADRL算法性能的影響

    圖  8  不同算法下的累積系統(tǒng)開銷

    圖  9  不同算法下系統(tǒng)開銷與LEO衛(wèi)星速率的關(guān)系

    表  1  基本符號及其含義

    符號含義
    $\mathcal{M}$設(shè)備集合
    $\mathcal{D}$災(zāi)區(qū)設(shè)備集合
    $\mathcal{R}$遠(yuǎn)郊設(shè)備集合
    $\mathcal{S}$LEO衛(wèi)星集合
    $d_m^n$時隙n設(shè)備m生成任務(wù)的大小
    $c_m^n$時隙n設(shè)備m的工作負(fù)載
    $w_m^n$時隙n設(shè)備m處理任務(wù)所需CPU周期數(shù)
    $T_m^{n,\max }$時隙n設(shè)備m處理任務(wù)的最大容忍時延
    $x_m^n$時隙n設(shè)備m的任務(wù)卸載決策
    $f_m^n$時隙n設(shè)備m的CPU工作頻率
    $p_m^n$時隙n設(shè)備m的傳輸功率
    $t_m^n$時隙n設(shè)備m的系統(tǒng)時延
    $e_m^n$時隙n設(shè)備m的系統(tǒng)能耗
    $c_m^n$時隙n設(shè)備m的系統(tǒng)開銷
    下載: 導(dǎo)出CSV

    1  自適應(yīng)DRL算法

     輸入:開銷矩陣
     (1)初始化在線網(wǎng)絡(luò)Q和目標(biāo)網(wǎng)絡(luò)Q_hat
     (2)初始化訓(xùn)練參數(shù)
     (3)  for episode =1 to n_ep do
     (4)   初始化狀態(tài) s
     (5)   for n=1 to N do
     (6)    根據(jù)$\varepsilon $貪婪策略選擇動作a
     (7)    更新狀態(tài)$ {\boldsymbol{s}}' $
     (8)   end for
     (9)  end for
     (10) if ${\mathcal{D}} $的大小≥ n_b:
     (11)  從D中隨機抽取最小批量轉(zhuǎn)移元組
     (12)  根據(jù)任務(wù)狀態(tài)選擇DQN或DDQN計算y
     (13) end if
     (14)計算損失函數(shù)${\text{Loss}}(\theta )$
     (15)更新在線網(wǎng)絡(luò)Q
     (16)每隔X步,更新目標(biāo)網(wǎng)絡(luò):Q_hat=Q
     (17)更新狀態(tài)$ {\boldsymbol{s}} \leftarrow {\boldsymbol{s}}' $
     (18)返回Q網(wǎng)絡(luò)
    下載: 導(dǎo)出CSV

    表  2  主要參數(shù)設(shè)置

    參數(shù)
    災(zāi)區(qū)設(shè)備數(shù)D 300
    遠(yuǎn)郊設(shè)備數(shù)R 5
    衛(wèi)星服務(wù)范圍半徑r 1 400 km
    任務(wù)大小$d_m^n$ [1e2,1e3,1e4,1e5,1e6] bit
    任務(wù)負(fù)載$c_m^n$ [1,1.5] kcycle/bit
    最大容忍時延$T_m^{n,\max }$ [0.05,0.1] s
    電氣系數(shù)${{\varepsilon }}$ 10–28
    信道帶寬B 10 MHz
    天線增益G 20 dBi
    噪聲溫度T 290 K
    IoT設(shè)備m的最大能耗$E_m^{\max }$ 5 W
    LEO衛(wèi)星s的最大能耗$E_s^{\max }$ 2 000 W
    云計算中心單核CPU工作頻率$f_{\text{c}}$ 1.45 GHz
    云計算中心核心數(shù)${N_{\text{c}}}$ 256
    下載: 導(dǎo)出CSV
  • [1] 工業(yè)和信息化部. 物聯(lián)網(wǎng)新型基礎(chǔ)設(shè)施建設(shè)三年行動計劃(2021-2023年)[R]. 2021.

    Ministry of Industry and Information Technology of the People's Republic of China. A three-year action plan for the construction of new IoT infrastructure[R]. 2021.
    [2] CUI Gaofeng, DUAN Pengfei, XU Lexi, et al. Latency optimization for hybrid GEO–LEO satellite-assisted IoT networks[J]. IEEE Internet of Things Journal, 2023, 10(7): 6286–6297. doi: 10.1109/JIOT.2022.3222831.
    [3] DE COLA T and BISIO I. QoS optimisation of eMBB services in converged 5G-satellite networks[J]. IEEE Transactions on Vehicular Technology, 2020, 69(10): 12098–12110. doi: 10.1109/TVT.2020.3011963.
    [4] KANEKO K, NISHIYAMA H, KATO N, et al. Construction of a flexibility analysis model for flexible high-throughput satellite communication systems with a digital channelizer[J]. IEEE Transactions on Vehicular Technology, 2018, 67(3): 2097–2107. doi: 10.1109/TVT.2017.2736010.
    [5] BOERO L, BRUSCHI R, DAVOLI F, et al. Satellite networking integration in the 5G ecosystem: Research trends and open challenges[J]. IEEE Network, 2018, 32(5): 9–15. doi: 10.1109/MNET.2018.1800052.
    [6] CHIEN W C, LAI C F, HOSSAIN M S, et al. Heterogeneous space and terrestrial integrated networks for IoT: Architecture and challenges[J]. IEEE Network, 2019, 33(1): 15–21. doi: 10.1109/MNET.2018.1800182.
    [7] RANAWEERA P, JURCUT A D, and LIYANAGE M. Survey on multi-access edge computing security and privacy[J]. IEEE Communications Surveys & Tutorials, 2021, 23(2): 1078–1124. doi: 10.1109/COMST.2021.3062546.
    [8] LI Chengcheng, ZHANG Yasheng, XIE Renchao, et al. Integrating edge computing into low earth orbit satellite networks: Architecture and prototype[J]. IEEE Access, 2021, 9: 39126–39137. doi: 10.1109/ACCESS.2021.3064397.
    [9] WANG Dezhi, WANG Wei, KANG Yuhan, et al. Distributed data offloading in ultra-dense LEO satellite networks: A stackelberg mean-field game approach[J]. IEEE Journal of Selected Topics in Signal Processing, 2023, 17(1): 112–127. doi: 10.1109/JSTSP.2022.3226400.
    [10] TANG Zhixuan, YU Kai, YANG Guannan, et al. New bridge to cloud: An ultra-dense LEO assisted green computation offloading approach[J]. IEEE Transactions on Green Communications and Networking, 2023, 7(2): 552–564. doi: 10.1109/TGCN.2022.3208819.
    [11] YU Shuai, GONG Xiaowen, SHI Qian, et al. EC-SAGINs: Edge-computing-enhanced space–air–ground-integrated networks for internet of vehicles[J]. IEEE Internet of Things Journal, 2022, 9(8): 5742–5754. doi: 10.1109/JIOT.2021.3052542.
    [12] LIU Yi, JIANG Li, QI Qi, et al. Energy-efficient space–air–ground integrated edge computing for internet of remote things: A federated DRL approach[J]. IEEE Internet of Things Journal, 2023, 10(6): 4845–4856. doi: 10.1109/JIOT.2022.3220677.
    [13] TANG Qingqing, FEI Zesong, LI Bin, et al. Stochastic computation offloading for LEO satellite edge computing networks: A learning-based approach[J]. IEEE Internet of Things Journal, 2024, 11(4): 5638–5652. doi: 10.1109/JIOT.2023.3307707.
    [14] ZHU Xiangming and JIANG Chunxiao. Delay optimization for cooperative multi-tier computing in integrated satellite-terrestrial networks[J]. IEEE Journal on Selected Areas in Communications, 2023, 41(2): 366–380. doi: 10.1109/JSAC.2022.3227083.
    [15] ZHANG Shanghong, CUI Gaofeng, LONG Yating, et al. Joint computing and communication resource allocation for satellite communication networks with edge computing[J]. China Communications, 2021, 18(7): 236–252. doi: 10.23919/JCC.2021.07.019.
    [16] TANG Qingqing, FEI Zesong, LI Bin, et al. Computation offloading in LEO satellite networks with hybrid cloud and edge computing[J]. IEEE Internet of Things Journal, 2021, 8(11): 9164–9176. doi: 10.1109/JIOT.2021.3056569.
    [17] CAO Bin, ZHANG Jintong, LIU Xin, et al. Edge–cloud resource scheduling in space–air–ground-integrated networks for internet of vehicles[J]. IEEE Internet of Things Journal, 2022, 9(8): 5765–5772. doi: 10.1109/JIOT.2021.3065583.
    [18] LI Zhipeng, LI Meng, and WANG Qian. Predator–prey model based asymmetry resource allocation in satellite–terrestrial network[J]. Symmetry, 2021, 13(11): 2113. doi: 10.3390/sym13112113.
    [19] LEE Y and CHOI J P. Connectivity analysis of mega-constellation satellite networks with optical intersatellite links[J]. IEEE Transactions on Aerospace and Electronic Systems, 2021, 57(6): 4213–4226. doi: 10.1109/TAES.2021.3090914.
    [20] ZHANG Hangyu, LIU Rongke, KAUSHIK A, et al. Satellite edge computing with collaborative computation offloading: An intelligent deep deterministic policy gradient approach[J]. IEEE Internet of Things Journal, 2023, 10(10): 9092–9107. doi: 10.1109/JIOT.2022.3233383.
    [21] GAO Xiangqiang, HU Yingmeng, SHAO Yingzhao, et al. Hierarchical dynamic resource allocation for computation offloading in LEO satellite networks[J]. IEEE Internet of Things Journal, 2024, 11(11): 19470–19484. doi: 10.1109/JIOT.2024.3367937.
    [22] 易必杰. 面向空天地一體化網(wǎng)絡(luò)的計算卸載策略研究[D]. [博士/碩士論文], 西安電子科技大學(xué), 2023. doi: 10.27389/d.cnki.gxadu.2023.002544.

    YI Bijie. Research on computing offloading strategy for space-air-ground integrated network[D]. Xidian University, 2023. doi: 10.27389/d.cnki.gxadu.2023.002544.
    [23] FANG Hai, JIA Yangyang. WANG Yuanle, et al. Matching game based task offloading and resource allocation algorithm for satellite edge computing networks[C]. Proceedings of 2022 International Symposium on Networks, Computers and Communications (ISNCC), Shenzhen, China, 2022: 1–5, doi: 10.1109/ISNCC55209.2022.9851813.
    [24] 郭子楨, 梁俊, 肖楠, 等. 軟件定義衛(wèi)星網(wǎng)絡(luò)多控制器可靠部署算法[J]. 西安交通大學(xué)學(xué)報, 2021, 55(2): 158–165. doi: 10.7652/xjtuxb202102019.

    GUO Zizhen, LIANG Jun, XIAO Nan, et al. Multi-controller reliable deployment algorithm for software defined satellite network[J]. Journal of Xi’an Jiaotong University, 2021, 55(2): 158–165. doi: 10.7652/xjtuxb202102019.
    [25] KUROSE J and ROSS K. Computer Networking: A Top-Down Approach[M]. 6th ed. Boston: Pearson, 2012.
    [26] 謝希仁. 計算機網(wǎng)絡(luò)[M]. 4版. 大連: 大連理工大學(xué)出版社, 2003.

    XIE Xiren. Computer Networking[M]. 4th ed. Dalian: Dalian University of Technology Press, 2003.
    [27] QI Xiaoxin, ZHANG Bing, QIU Zhiliang, et al. Using inter-mesh links to reduce end-to-end delay in walker delta constellations[J]. IEEE Communications Letters, 2021, 25(9): 3070–3074. doi: 10.1109/LCOMM.2021.3095227.
    [28] YOU Changsheng, HUANG Kaibin, and CHAE H. Energy efficient mobile cloud computing powered by wireless energy transfer[J]. IEEE Journal on Selected Areas in Communications, 2016, 34(5): 1757–1771. doi: 10.1109/JSAC.2016.2545382.
    [29] NOWAK R. Generalized binary search[C]. 2008 46th Annual Allerton Conference on Communication, Control, and Computing, Monticello, USA, 2008: 568–574. doi: 10.1109/ALLERTON.2008.4797609.
    [30] AVRIEL M. Nonlinear Programming: Analysis and Methods[M]. Englewood Cliffs: Prentice-Hall, 1976.
    [31] MNIH V, KAVUKCUOGLU K, SILVER D, et al. Human-level control through deep reinforcement learning[J]. Nature, 2015, 518(7540): 529–533. doi: 10.1038/nature14236.
    [32] VAN HASSELT H, GUEZ A, and SILVER D. Deep reinforcement learning with double Q-learning[C]. The Thirtieth AAAI Conference on Artificial Intelligence, Phoenix, Arizona, 2016: 2094–2100.
    [33] SHUAI Jiaqi, CUI Haixia, HE Yejun, et al. Dynamic satellite edge computing offloading algorithm based on distributed deep learning[J]. IEEE Internet of Things Journal, 2024, 11(16): 27790–27802. doi: 10.1109/JIOT.2024.3404830.
  • 加載中
圖(9) / 表(3)
計量
  • 文章訪問數(shù):  696
  • HTML全文瀏覽量:  357
  • PDF下載量:  112
  • 被引次數(shù): 0
出版歷程
  • 收稿日期:  2024-07-26
  • 修回日期:  2024-12-10
  • 網(wǎng)絡(luò)出版日期:  2024-12-17
  • 刊出日期:  2025-02-28

目錄

    /

    返回文章
    返回