一级黄色片免费播放|中国黄色视频播放片|日本三级a|可以直接考播黄片影视免费一级毛片

高級(jí)搜索

留言板

尊敬的讀者、作者、審稿人, 關(guān)于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復(fù)。謝謝您的支持!

姓名
郵箱
手機(jī)號(hào)碼
標(biāo)題
留言內(nèi)容
驗(yàn)證碼

RIS輔助下的跨模態(tài)通信資源分配

陳鳴鍇 孫振德 萬雅芳

陳鳴鍇, 孫振德, 萬雅芳. RIS輔助下的跨模態(tài)通信資源分配[J]. 電子與信息學(xué)報(bào), 2025, 47(2): 363-374. doi: 10.11999/JEIT240619
引用本文: 陳鳴鍇, 孫振德, 萬雅芳. RIS輔助下的跨模態(tài)通信資源分配[J]. 電子與信息學(xué)報(bào), 2025, 47(2): 363-374. doi: 10.11999/JEIT240619
CHEN Mingkai, SUN Zhende, WAN Yafang. Resource Allocation for RIS-aided Cross-Model Communications[J]. Journal of Electronics & Information Technology, 2025, 47(2): 363-374. doi: 10.11999/JEIT240619
Citation: CHEN Mingkai, SUN Zhende, WAN Yafang. Resource Allocation for RIS-aided Cross-Model Communications[J]. Journal of Electronics & Information Technology, 2025, 47(2): 363-374. doi: 10.11999/JEIT240619

RIS輔助下的跨模態(tài)通信資源分配

doi: 10.11999/JEIT240619 cstr: 32379.14.JEIT240619
基金項(xiàng)目: 國家自然科學(xué)基金(62001246),江蘇省重點(diǎn)研發(fā)計(jì)劃項(xiàng)目(BE2023035),江蘇省通信與網(wǎng)絡(luò)技術(shù)工程研究中心開放課題
詳細(xì)信息
    作者簡介:

    陳鳴鍇:男,副教授,研究方向?yàn)闊o線通信、信號(hào)處理、多媒體信息處理等

    孫振德:男,碩士生,研究方向?yàn)檎Z義通信

    萬雅芳:女,碩士生,研究方向?yàn)槎嗝襟w通信

    通訊作者:

    陳鳴鍇 mkchen@njupt.edu.cn

  • 中圖分類號(hào): TN911

Resource Allocation for RIS-aided Cross-Model Communications

Funds: The National Natural Science Foundation of China (62001246), The Key Reserch and Development Program of Jiangsu Province Key project and topics (BE2023035), Open Research Fundation of Jiangsu Engineering Research Center of Communication and Network Technology, NJUPT
  • 摘要: 針對(duì)視頻和觸覺業(yè)務(wù)共存的跨模態(tài)業(yè)務(wù)場景,該文構(gòu)建了可重構(gòu)智能表面(RIS)輔助的共存網(wǎng)絡(luò)切片系統(tǒng),用以提高視頻業(yè)務(wù)和觸覺業(yè)務(wù)的傳輸速率和可靠性。同時(shí),為了有效降低觸覺業(yè)務(wù)通過穿孔帶給視頻業(yè)務(wù)的資源損耗,提出了動(dòng)態(tài)被動(dòng)波束賦形方案,允許RIS在不同時(shí)隙進(jìn)行動(dòng)態(tài)調(diào)整。基于上述方案,該文在確保觸覺業(yè)務(wù)傳輸?shù)臅r(shí)延和可靠性滿足約束的同時(shí),構(gòu)建最大化視頻業(yè)務(wù)傳輸速率的優(yōu)化問題,以滿足跨模態(tài)業(yè)務(wù)共存需求,實(shí)現(xiàn)資源的合理分配。為求解此優(yōu)化問題,該文將其建模為一個(gè)馬爾可夫決策過程(MDP),通過深度確定性策略梯度(DDPG)算法來進(jìn)行視頻數(shù)據(jù)和觸覺數(shù)據(jù)傳輸資源的聯(lián)合優(yōu)化。仿真結(jié)果顯示,與現(xiàn)有方案相比,所提方案具有一定的優(yōu)越性,在保證傳輸觸覺業(yè)務(wù)可靠性的前提下,提高了約66.67%的視頻業(yè)務(wù)和速率。
  • 圖  1  基于穿孔方案的RIS輔助跨模態(tài)通信系統(tǒng)架構(gòu)

    圖  2  資源塊的說明和提出的動(dòng)態(tài)被動(dòng)波束形成方案

    圖  3  基于actor-critic的DDPG算法框架圖

    圖  4  不同方案下用戶和速率隨著基站功率的變化趨勢

    圖  5  不同方案下用戶和速率隨著RIS反射單元數(shù)量的變化趨勢

    圖  6  不同基站功率和RIS反射單元數(shù)量對(duì)觸覺數(shù)據(jù)包平均時(shí)延的影響

    圖  7  不同觸覺數(shù)據(jù)包到達(dá)速率下用戶和速率的變化情況

    圖  8  不同功率下獎(jiǎng)勵(lì)隨步長的變化

    圖  9  不同學(xué)習(xí)率下平均獎(jiǎng)勵(lì)隨步長的變化

    1  DDPG算法

     初始化:${s_1}$,${\theta _a}$,${\theta _c}$,${\theta '_a} \leftarrow {\theta _a}$和${\theta '_c} \leftarrow {\theta _c}$,經(jīng)驗(yàn)回放池$\mathbb{N}$,隨
     機(jī)噪聲${{{\boldsymbol{N}}}_t}$
     while 迭代回合$ \le $最大迭代回合 do
      while $t \le T$ do
       ? 根據(jù)狀態(tài)${s_t}$和隨機(jī)噪聲${{{\boldsymbol{N}}}_t}$,通過actor網(wǎng)絡(luò)計(jì)算動(dòng)作
       ${{\boldsymbol{a}}_t} = \mu ({{\boldsymbol{s}}_t};{\theta _a}) + {{\boldsymbol N}_t}$
       ? 執(zhí)行動(dòng)作${{\boldsymbol{a}}_t}$,獲得獎(jiǎng)賞值$r({{\boldsymbol{s}}_t},{{\boldsymbol{a}}_t})$和下一狀態(tài)${{\boldsymbol{s}}_{t + 1}}$
       ? 將經(jīng)驗(yàn)$({{\boldsymbol{s}}_t},{{\boldsymbol{a}}_t},{r_t},{{\boldsymbol{s}}_{t + 1}})$存儲(chǔ)至經(jīng)驗(yàn)回放池$\mathbb{N}$中
       ? 從經(jīng)驗(yàn)回放池$\mathbb{N}$中隨機(jī)采樣${N_{{\mathrm{batch}}}}$個(gè)經(jīng)驗(yàn)樣本進(jìn)行神經(jīng)網(wǎng)
       絡(luò)訓(xùn)練
       ? 通過式(26)的近似形式,計(jì)算得到當(dāng)前訓(xùn)練critic網(wǎng)絡(luò)的損
       失函數(shù)
       ? 通過損失函數(shù)$L({\theta _c})$關(guān)于${\theta _c}$的梯度更新critic網(wǎng)絡(luò)的參數(shù)
       ? 通過式(23)更新actor網(wǎng)絡(luò)的參數(shù)${\theta _a}$
       ? 使用式(29)和式(30)來更新目標(biāo)actor網(wǎng)絡(luò)和目標(biāo)critic網(wǎng)絡(luò)
       的參數(shù)${\theta '_a}$和${\theta '_c}$
       ? $t \leftarrow t + 1$
      end while
     end while
    下載: 導(dǎo)出CSV

    表  1  仿真參數(shù)表

    參數(shù)意義 設(shè)定數(shù)值
    資源塊RB總數(shù)$K$ 200
    時(shí)隙個(gè)數(shù)$T$ 20
    一個(gè)時(shí)隙的持續(xù)時(shí)間 1 ms
    一個(gè)微小時(shí)隙的持續(xù)時(shí)間$\varDelta $ 0.125 ms
    一個(gè)時(shí)隙內(nèi)微小時(shí)隙個(gè)數(shù)${M}$ 8
    RB的頻率帶寬$B$ 180 kHz
    觸覺數(shù)據(jù)包到達(dá)速率$\lambda $ 3
    觸覺數(shù)據(jù)包的大小$D_l^{m,t}$ 20 Byte
    高斯隨機(jī)噪聲功率${\delta ^2}$ –93 dBm
    觸覺數(shù)據(jù)包的解碼錯(cuò)誤概率${\varepsilon _l}$ ${10^{ - 6}}$
    下載: 導(dǎo)出CSV
  • [1] 李玉宏, 張朋, 金帝, 等. 應(yīng)用對(duì)未來網(wǎng)絡(luò)的需求與挑戰(zhàn)[J]. 電信科學(xué), 2019, 35(8): 2019203. doi: 10.11959/j.issn.1000-0801.2019203.

    LI Yuhong, ZHANG Peng, JIN Di, et al. Application's needs and challenges for future networks[J]. Telecommunications Science, 2019, 35(8): 2019203. doi: 10.11959/j.issn.1000-0801.2019203.
    [2] WEI Xin, WU Dan, ZHOU Liang, et al. Cross-modal communication technology: A survey[J]. Fundamental Research, 2023. doi: 10.1016/j.fmre.2023.08.002.
    [3] WEI Xin, ZHANG Meng, and ZHOU Liang. Cross-modal transmission strategy[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2022, 32(6): 3991–4003. doi: 10.1109/TCSVT.2021.3105130.
    [4] 陳鳴鍇, 柳明浩, 王文俊, 等. 面向6G的跨模態(tài)語義編解碼技術(shù)[J]. 信號(hào)處理, 2023, 39(7): 1141–1154. doi: 10.16798/j.issn.1003-0530.2023.07.001.

    CHEN Mingkai, LIU Minghao, WANG Wenjun, et al. Codec for cross-modal semantic communication in 6G[J]. Journal of Signal Processing, 2023, 39(7): 1141–1154. doi: 10.16798/j.issn.1003-0530.2023.07.001.
    [5] ALTAF KHATTAK S B, NASRALLA M M, and REHMAN I U. The role of 6G networks in enabling future smart health services and applications[C]. Proceedings of 2022 IEEE International Smart Cities Conference, Pafos, Cyprus, 2022: 1–7. doi: 10.1109/ISC255366.2022.9922093.
    [6] 李昂, 陳建新, 魏昕, 等. 面向6G的跨模態(tài)信號(hào)重建技術(shù)[J]. 通信學(xué)報(bào), 2022, 43(6): 28–40. doi: 10.11959/j.issn.1000-436x.2022093.

    LI Ang, CHEN Jianxin, WEI Xin, et al. 6G-oriented cross-modal signal reconstruction technology[J]. Journal on Communications, 2022, 43(6): 28–40. doi: 10.11959/j.issn.1000-436x.2022093.
    [7] ZHOU Liang, WU Dan, CHEN Jianxin, et al. Cross-modal collaborative communications[J]. IEEE Wireless Communications, 2020, 27(2): 112–117. doi: 10.1109/MWC.001.1900201.
    [8] STEINBACH E, STRESE M, EID M, et al. Haptic codecs for the tactile internet[J]. Proceedings of the IEEE, 2019, 107(2): 447–470. doi: 10.1109/JPROC.2018.2867835.
    [9] ALSENWI M, TRAN N H, BENNIS M, et al. eMBB-URLLC resource slicing: A risk-sensitive approach[J]. IEEE Communications Letters, 2019, 23(4): 740–743. doi: 10.1109/LCOMM.2019.2900044.
    [10] SUN Haipeng, YANG Jin, SU Junhao, et al. Joint resource scheduling for coexistence of URLLC and eMBB in 5G wireless networks[C]. Proceedings of 2021 Computing, Communications and IoT Applications, Shenzhen, China, 2021: 53–58. doi: 10.1109/ComComAp53641.2021.9653121.
    [11] ZHAO Yunzhi, CHI Xuefen, QIAN Lei, et al. Resource allocation and slicing puncture in cellular networks with eMBB and URLLC terminals coexistence[J]. IEEE Internet of Things Journal, 2022, 9(19): 18431–18444. doi: 10.1109/JIOT.2022.3160647.
    [12] REN Rong, WANG Jie, YU Jingming, et al. Hybrid puncturing and superposition scheme for multiplexing uRLLC and eMBB services based on deep reinforcement learning[C]. Proceedings of the 2022 IEEE 8th International Conference on Computer and Communications, Chengdu, China, 2022: 806–810. doi: 10.1109/ICCC56324.2022.10065784.
    [13] GUO Jiangfeng, NIE Gaofeng, TIAN Hui, et al. Puncture-predictive fairness scheduling scheme for eMBB and URLLC based on TD3 algorithm[C]. Proceedings of 2023 IEEE/CIC International Conference on Communications in China, Dalian, China, 2023: 1–6. doi: 10.1109/ICCC57788.2023.10233289.
    [14] ZHUANSUN Chenlu, YAN Kedong, ZHANG Gongxuan, et al. Hypergraph-based joint channel and power resource allocation for cross-cell M2M communication in IIoT[J]. IEEE Internet of Things Journal, 2023, 10(17): 15350–15361. doi: 10.1109/JIOT.2023.3263567.
    [15] WANG Lei, YIN Anmin, JIANG Xue, et al. Resource allocation for multi-traffic in cross-modal communications[J]. IEEE Transactions on Network and Service Management, 2023, 20(1): 60–72. doi: 10.1109/TNSM.2022.3207776.
    [16] 文夢(mèng)甜. 跨模態(tài)通信中傳輸策略優(yōu)化研究[D]. [碩士論文], 南京郵電大學(xué), 2023. doi: 10.27251/d.cnki.gnjdc.2023.001196.

    WEN Mengtian. Research on optimization of transmission strategy in cross-modal communications[D]. [Master dissertation], Nanjing University of Posts and Telecommunications, 2023. doi: 10.27251/d.cnki.gnjdc.2023.001196.
    [17] WU Qingqing and ZHANG Rui. Towards smart and reconfigurable environment: Intelligent reflecting surface aided wireless network[J]. IEEE Communications Magazine, 2020, 58(1): 106–112. doi: 10.1109/MCOM.001.1900107.
    [18] LIASKOS C, NIE Shuai, TSIOLIARIDOU A, et al. A new wireless communication paradigm through software-controlled metasurfaces[J]. IEEE Communications Magazine, 2018, 56(9): 162–169. doi: 10.1109/MCOM.2018.1700659.
    [19] DI RENZO M, DEBBAH M, PHAN-HUY D T, et al. Smart radio environments empowered by reconfigurable AI meta-surfaces: An idea whose time has come[J]. EURASIP Journal on Wireless Communications and Networking, 2019, 2019: 129. doi: 10.1186/s13638-019-1438-9.
    [20] GHANEM W R, JAMALI V, and SCHOBER R. Joint beamforming and phase shift optimization for multicell IRS-aided OFDMA-URLLC systems[C]. Proceedings of 2021 IEEE Wireless Communications and Networking Conference, Nanjing, China, 2021: 1–7. doi: 10.1109/WCNC49053.2021.9417582.
    [21] CAO Xuelin, YANG Bo, HUANG Chongwen, et al. Reconfigurable intelligent surface-assisted aerial-terrestrial communications via multi-task learning[J]. IEEE Journal on Selected Areas in Communications, 2021, 39(10): 3035–3050. doi: 10.1109/JSAC.2021.3088634.
    [22] MELGAREJO D C, KALALAS C, DE SENA A S, et al. Reconfigurable intelligent surface-aided grant-free access for uplink URLLC[C]. Proceedings of the 2020 2nd 6G Wireless Summit, Levi, Finland, 2020: 1–5. doi: 10.1109/6GSUMMIT49458.2020.9083788.
    [23] ALMEKHLAFI M, ARFAOUI M A, ELHATTAB M, et al. Joint resource allocation and phase shift optimization for RIS-aided eMBB/URLLC traffic multiplexing[J]. IEEE Transactions on Communications, 2022, 70(2): 1304–1319. doi: 10.1109/TCOMM.2021.3127265.
    [24] ZHOU Shuangquan, ZHANG Wenbin, XU Fanglei, et al. Energy-efficient resource allocation in DDPG-based integrated satellite-terrestrial network[C]. Proceedings of 2023 IEEE Globecom Workshops, Kuala Lumpur, Malaysia, 2023: 147–152. doi: 10.1109/GCWkshps58843.2023.10464487.
    [25] SUTTON R S, MCALLESTER D, SINGH S, et al. Policy gradient methods for reinforcement learning with function approximation[C]. Proceedings of the 13th International Conference on Neural Information Processing Systems, Denver CO, USA, 1999: 1057–1063.
  • 加載中
圖(9) / 表(2)
計(jì)量
  • 文章訪問數(shù):  136
  • HTML全文瀏覽量:  124
  • PDF下載量:  31
  • 被引次數(shù): 0
出版歷程
  • 收稿日期:  2024-07-17
  • 修回日期:  2025-02-12
  • 網(wǎng)絡(luò)出版日期:  2025-02-21
  • 刊出日期:  2025-02-28

目錄

    /

    返回文章
    返回