RIS輔助下的跨模態(tài)通信資源分配
doi: 10.11999/JEIT240619 cstr: 32379.14.JEIT240619
-
1.
南京郵電大學(xué)通信與信息工程學(xué)院 南京 210003
-
2.
南京郵電大學(xué)江蘇省通信與網(wǎng)絡(luò)技術(shù)工程研究中心 南京 210019
Resource Allocation for RIS-aided Cross-Model Communications
-
1.
School of Communication and Information Engineering, Nanjing University of Posts and Telecommunications, Nanjing 210003, China
-
2.
Jiangsu Engineering Research Center of Communication and Network Technology, Nanjing University of Posts and Telecommunications, Nanjing 210019, China
-
摘要: 針對(duì)視頻和觸覺業(yè)務(wù)共存的跨模態(tài)業(yè)務(wù)場景,該文構(gòu)建了可重構(gòu)智能表面(RIS)輔助的共存網(wǎng)絡(luò)切片系統(tǒng),用以提高視頻業(yè)務(wù)和觸覺業(yè)務(wù)的傳輸速率和可靠性。同時(shí),為了有效降低觸覺業(yè)務(wù)通過穿孔帶給視頻業(yè)務(wù)的資源損耗,提出了動(dòng)態(tài)被動(dòng)波束賦形方案,允許RIS在不同時(shí)隙進(jìn)行動(dòng)態(tài)調(diào)整。基于上述方案,該文在確保觸覺業(yè)務(wù)傳輸?shù)臅r(shí)延和可靠性滿足約束的同時(shí),構(gòu)建最大化視頻業(yè)務(wù)傳輸速率的優(yōu)化問題,以滿足跨模態(tài)業(yè)務(wù)共存需求,實(shí)現(xiàn)資源的合理分配。為求解此優(yōu)化問題,該文將其建模為一個(gè)馬爾可夫決策過程(MDP),通過深度確定性策略梯度(DDPG)算法來進(jìn)行視頻數(shù)據(jù)和觸覺數(shù)據(jù)傳輸資源的聯(lián)合優(yōu)化。仿真結(jié)果顯示,與現(xiàn)有方案相比,所提方案具有一定的優(yōu)越性,在保證傳輸觸覺業(yè)務(wù)可靠性的前提下,提高了約66.67%的視頻業(yè)務(wù)和速率。
-
關(guān)鍵詞:
- 跨模態(tài)通信 /
- 可重構(gòu)智能表面 /
- 網(wǎng)絡(luò)切片 /
- 資源分配
Abstract:Objective The rapid development of digital and intelligent technologies has driven the increasing demand for cross-modal communication systems to support a wide range of applications, such as high-bandwidth video streaming, ultra-reliable low-latency haptic interactions, and immersive virtual reality experiences. These applications require the concurrent transmission of heterogeneous services, each with distinct and often conflicting resource demands. For instance, video services necessitate high data rates and large bandwidth allocations for smooth playback, while haptic services require ultra-low latency (<0.3 ms) and high reliability (>99.999%) for real-time interaction. Existing resource allocation schemes, typically designed for single-service scenarios or static optimization, do not effectively address the dynamic nature of wireless channels or the stringent requirements of multi-service coexistence. This paper proposes a dynamic resource allocation framework that utilizes Reconfigurable Intelligent Surfaces (RIS) to optimize the transmission efficiency of video services and the reliability of haptic services, thereby enhancing spectrum utilization and improving the Quality of Experience (QoE) in cross-modal communication systems. Methods To address the resource competition between video and haptic services, this paper proposes an RIS-aided network slicing architecture. The RIS dynamically adjusts its phase shifts to reshape the wireless propagation environment, improving channel gain and reducing interference. A puncturing-based resource sharing mechanism is introduced, enabling haptic traffic to temporarily use resources allocated to video services during burst arrivals. This mechanism ensures the stringent latency and reliability requirements of haptic services are met without significantly affecting video service performance. The optimization problem is formulated as a Mixed-Integer Nonlinear Programming (MINLP) task, with the objective of maximizing the video service rate while satisfying the constraints of haptic services. To tackle the complexity of joint RIS phase optimization and resource allocation, the problem is modeled as a Markov Decision Process (MDP) with continuous state and action spaces. A Deep Deterministic Policy Gradient (DDPG) algorithm is employed, integrating actor-critic networks, experience replay, and target networks to learn optimal policies. The actor network generates decisions regarding resource block allocation, RIS phase shifts, and puncturing ratios, while the critic network evaluates the long-term reward, defined as the weighted sum of video throughput and haptic service satisfaction. Results and Discussions Simulation results demonstrate the effectiveness of the proposed scheme. Compared to the HMSA scheme, the proposed method significantly improves the total transmission rate for users, particularly under varying Base Station (BS) power levels ( Fig. 4 ). The RIS phase optimization scheme outperforms both the random phase and no-RIS scenarios, highlighting the importance of dynamically adjusting RIS reflection coefficients to enhance channel gain (Fig. 5 ). Furthermore, the average delay of haptic data packets decreases as the number of RIS reflection units increases, and higher BS transmit power further reduces latency, confirming the synergy between RIS deployment and power allocation (Fig. 6 ). The user sum rate declines as the arrival rate of haptic data packets increases, due to intensified resource competition. However, deploying additional RIS reflection units mitigates this degradation, demonstrating the robustness of RIS-aided resource allocation (Fig. 7 ). The convergence behavior of the DDPG algorithm is analyzed, showing faster convergence in low-SNR environments (e.g., P = 0 dBm) compared to high-SNR scenarios (e.g., P = 30 dBm), where reward fluctuations are more pronounced (Fig. 8 ). Additionally, the learning rate is identified as a key hyperparameter, with a value of 0.001 providing the optimal balance between convergence speed and stability (Fig. 9 ). These results confirm that the proposed framework enhances video service throughput while ensuring the stringent reliability and low-latency requirements of haptic services, enabling efficient cross-modal resource coexistence.Conclusions This work presents an RIS-assisted dynamic resource allocation framework for cross-modal communication systems, effectively addressing the coexistence challenges of video and haptic services. Key innovations include the integration of RIS phase optimization with puncturing-based resource sharing and the application of DDPG to solve high-dimensional MINLP problems. The proposed scheme significantly enhances video throughput and haptic reliability, demonstrating its potential for 6G-enabled immersive applications. Future research will extend this framework to mobile user scenarios, multi-RIS collaborative systems, and multi-service coexistence environments with diverse QoS requirements. Specifically, the study will examine the impact of user mobility on RIS configuration and resource allocation strategies. Additionally, the benefits of deploying multiple RIS units in a coordinated manner will be explored to further enhance system performance and coverage. Finally, the framework will be expanded to support a broader range of services with varying latency, reliability, and bandwidth demands, paving the way for more versatile and efficient cross-modal communication systems. -
1 DDPG算法
初始化:${s_1}$,${\theta _a}$,${\theta _c}$,${\theta '_a} \leftarrow {\theta _a}$和${\theta '_c} \leftarrow {\theta _c}$,經(jīng)驗(yàn)回放池$\mathbb{N}$,隨
機(jī)噪聲${{{\boldsymbol{N}}}_t}$while 迭代回合$ \le $最大迭代回合 do while $t \le T$ do ? 根據(jù)狀態(tài)${s_t}$和隨機(jī)噪聲${{{\boldsymbol{N}}}_t}$,通過actor網(wǎng)絡(luò)計(jì)算動(dòng)作
${{\boldsymbol{a}}_t} = \mu ({{\boldsymbol{s}}_t};{\theta _a}) + {{\boldsymbol N}_t}$? 執(zhí)行動(dòng)作${{\boldsymbol{a}}_t}$,獲得獎(jiǎng)賞值$r({{\boldsymbol{s}}_t},{{\boldsymbol{a}}_t})$和下一狀態(tài)${{\boldsymbol{s}}_{t + 1}}$ ? 將經(jīng)驗(yàn)$({{\boldsymbol{s}}_t},{{\boldsymbol{a}}_t},{r_t},{{\boldsymbol{s}}_{t + 1}})$存儲(chǔ)至經(jīng)驗(yàn)回放池$\mathbb{N}$中 ? 從經(jīng)驗(yàn)回放池$\mathbb{N}$中隨機(jī)采樣${N_{{\mathrm{batch}}}}$個(gè)經(jīng)驗(yàn)樣本進(jìn)行神經(jīng)網(wǎng)
絡(luò)訓(xùn)練? 通過式(26)的近似形式,計(jì)算得到當(dāng)前訓(xùn)練critic網(wǎng)絡(luò)的損
失函數(shù)? 通過損失函數(shù)$L({\theta _c})$關(guān)于${\theta _c}$的梯度更新critic網(wǎng)絡(luò)的參數(shù) ? 通過式(23)更新actor網(wǎng)絡(luò)的參數(shù)${\theta _a}$ ? 使用式(29)和式(30)來更新目標(biāo)actor網(wǎng)絡(luò)和目標(biāo)critic網(wǎng)絡(luò)
的參數(shù)${\theta '_a}$和${\theta '_c}$? $t \leftarrow t + 1$ end while end while 下載: 導(dǎo)出CSV
表 1 仿真參數(shù)表
參數(shù)意義 設(shè)定數(shù)值 資源塊RB總數(shù)$K$ 200 時(shí)隙個(gè)數(shù)$T$ 20 一個(gè)時(shí)隙的持續(xù)時(shí)間 1 ms 一個(gè)微小時(shí)隙的持續(xù)時(shí)間$\varDelta $ 0.125 ms 一個(gè)時(shí)隙內(nèi)微小時(shí)隙個(gè)數(shù)${M}$ 8 RB的頻率帶寬$B$ 180 kHz 觸覺數(shù)據(jù)包到達(dá)速率$\lambda $ 3 觸覺數(shù)據(jù)包的大小$D_l^{m,t}$ 20 Byte 高斯隨機(jī)噪聲功率${\delta ^2}$ –93 dBm 觸覺數(shù)據(jù)包的解碼錯(cuò)誤概率${\varepsilon _l}$ ${10^{ - 6}}$ 下載: 導(dǎo)出CSV
-
[1] 李玉宏, 張朋, 金帝, 等. 應(yīng)用對(duì)未來網(wǎng)絡(luò)的需求與挑戰(zhàn)[J]. 電信科學(xué), 2019, 35(8): 2019203. doi: 10.11959/j.issn.1000-0801.2019203.LI Yuhong, ZHANG Peng, JIN Di, et al. Application's needs and challenges for future networks[J]. Telecommunications Science, 2019, 35(8): 2019203. doi: 10.11959/j.issn.1000-0801.2019203. [2] WEI Xin, WU Dan, ZHOU Liang, et al. Cross-modal communication technology: A survey[J]. Fundamental Research, 2023. doi: 10.1016/j.fmre.2023.08.002. [3] WEI Xin, ZHANG Meng, and ZHOU Liang. Cross-modal transmission strategy[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2022, 32(6): 3991–4003. doi: 10.1109/TCSVT.2021.3105130. [4] 陳鳴鍇, 柳明浩, 王文俊, 等. 面向6G的跨模態(tài)語義編解碼技術(shù)[J]. 信號(hào)處理, 2023, 39(7): 1141–1154. doi: 10.16798/j.issn.1003-0530.2023.07.001.CHEN Mingkai, LIU Minghao, WANG Wenjun, et al. Codec for cross-modal semantic communication in 6G[J]. Journal of Signal Processing, 2023, 39(7): 1141–1154. doi: 10.16798/j.issn.1003-0530.2023.07.001. [5] ALTAF KHATTAK S B, NASRALLA M M, and REHMAN I U. The role of 6G networks in enabling future smart health services and applications[C]. Proceedings of 2022 IEEE International Smart Cities Conference, Pafos, Cyprus, 2022: 1–7. doi: 10.1109/ISC255366.2022.9922093. [6] 李昂, 陳建新, 魏昕, 等. 面向6G的跨模態(tài)信號(hào)重建技術(shù)[J]. 通信學(xué)報(bào), 2022, 43(6): 28–40. doi: 10.11959/j.issn.1000-436x.2022093.LI Ang, CHEN Jianxin, WEI Xin, et al. 6G-oriented cross-modal signal reconstruction technology[J]. Journal on Communications, 2022, 43(6): 28–40. doi: 10.11959/j.issn.1000-436x.2022093. [7] ZHOU Liang, WU Dan, CHEN Jianxin, et al. Cross-modal collaborative communications[J]. IEEE Wireless Communications, 2020, 27(2): 112–117. doi: 10.1109/MWC.001.1900201. [8] STEINBACH E, STRESE M, EID M, et al. Haptic codecs for the tactile internet[J]. Proceedings of the IEEE, 2019, 107(2): 447–470. doi: 10.1109/JPROC.2018.2867835. [9] ALSENWI M, TRAN N H, BENNIS M, et al. eMBB-URLLC resource slicing: A risk-sensitive approach[J]. IEEE Communications Letters, 2019, 23(4): 740–743. doi: 10.1109/LCOMM.2019.2900044. [10] SUN Haipeng, YANG Jin, SU Junhao, et al. Joint resource scheduling for coexistence of URLLC and eMBB in 5G wireless networks[C]. Proceedings of 2021 Computing, Communications and IoT Applications, Shenzhen, China, 2021: 53–58. doi: 10.1109/ComComAp53641.2021.9653121. [11] ZHAO Yunzhi, CHI Xuefen, QIAN Lei, et al. Resource allocation and slicing puncture in cellular networks with eMBB and URLLC terminals coexistence[J]. IEEE Internet of Things Journal, 2022, 9(19): 18431–18444. doi: 10.1109/JIOT.2022.3160647. [12] REN Rong, WANG Jie, YU Jingming, et al. Hybrid puncturing and superposition scheme for multiplexing uRLLC and eMBB services based on deep reinforcement learning[C]. Proceedings of the 2022 IEEE 8th International Conference on Computer and Communications, Chengdu, China, 2022: 806–810. doi: 10.1109/ICCC56324.2022.10065784. [13] GUO Jiangfeng, NIE Gaofeng, TIAN Hui, et al. Puncture-predictive fairness scheduling scheme for eMBB and URLLC based on TD3 algorithm[C]. Proceedings of 2023 IEEE/CIC International Conference on Communications in China, Dalian, China, 2023: 1–6. doi: 10.1109/ICCC57788.2023.10233289. [14] ZHUANSUN Chenlu, YAN Kedong, ZHANG Gongxuan, et al. Hypergraph-based joint channel and power resource allocation for cross-cell M2M communication in IIoT[J]. IEEE Internet of Things Journal, 2023, 10(17): 15350–15361. doi: 10.1109/JIOT.2023.3263567. [15] WANG Lei, YIN Anmin, JIANG Xue, et al. Resource allocation for multi-traffic in cross-modal communications[J]. IEEE Transactions on Network and Service Management, 2023, 20(1): 60–72. doi: 10.1109/TNSM.2022.3207776. [16] 文夢(mèng)甜. 跨模態(tài)通信中傳輸策略優(yōu)化研究[D]. [碩士論文], 南京郵電大學(xué), 2023. doi: 10.27251/d.cnki.gnjdc.2023.001196.WEN Mengtian. Research on optimization of transmission strategy in cross-modal communications[D]. [Master dissertation], Nanjing University of Posts and Telecommunications, 2023. doi: 10.27251/d.cnki.gnjdc.2023.001196. [17] WU Qingqing and ZHANG Rui. Towards smart and reconfigurable environment: Intelligent reflecting surface aided wireless network[J]. IEEE Communications Magazine, 2020, 58(1): 106–112. doi: 10.1109/MCOM.001.1900107. [18] LIASKOS C, NIE Shuai, TSIOLIARIDOU A, et al. A new wireless communication paradigm through software-controlled metasurfaces[J]. IEEE Communications Magazine, 2018, 56(9): 162–169. doi: 10.1109/MCOM.2018.1700659. [19] DI RENZO M, DEBBAH M, PHAN-HUY D T, et al. Smart radio environments empowered by reconfigurable AI meta-surfaces: An idea whose time has come[J]. EURASIP Journal on Wireless Communications and Networking, 2019, 2019: 129. doi: 10.1186/s13638-019-1438-9. [20] GHANEM W R, JAMALI V, and SCHOBER R. Joint beamforming and phase shift optimization for multicell IRS-aided OFDMA-URLLC systems[C]. Proceedings of 2021 IEEE Wireless Communications and Networking Conference, Nanjing, China, 2021: 1–7. doi: 10.1109/WCNC49053.2021.9417582. [21] CAO Xuelin, YANG Bo, HUANG Chongwen, et al. Reconfigurable intelligent surface-assisted aerial-terrestrial communications via multi-task learning[J]. IEEE Journal on Selected Areas in Communications, 2021, 39(10): 3035–3050. doi: 10.1109/JSAC.2021.3088634. [22] MELGAREJO D C, KALALAS C, DE SENA A S, et al. Reconfigurable intelligent surface-aided grant-free access for uplink URLLC[C]. Proceedings of the 2020 2nd 6G Wireless Summit, Levi, Finland, 2020: 1–5. doi: 10.1109/6GSUMMIT49458.2020.9083788. [23] ALMEKHLAFI M, ARFAOUI M A, ELHATTAB M, et al. Joint resource allocation and phase shift optimization for RIS-aided eMBB/URLLC traffic multiplexing[J]. IEEE Transactions on Communications, 2022, 70(2): 1304–1319. doi: 10.1109/TCOMM.2021.3127265. [24] ZHOU Shuangquan, ZHANG Wenbin, XU Fanglei, et al. Energy-efficient resource allocation in DDPG-based integrated satellite-terrestrial network[C]. Proceedings of 2023 IEEE Globecom Workshops, Kuala Lumpur, Malaysia, 2023: 147–152. doi: 10.1109/GCWkshps58843.2023.10464487. [25] SUTTON R S, MCALLESTER D, SINGH S, et al. Policy gradient methods for reinforcement learning with function approximation[C]. Proceedings of the 13th International Conference on Neural Information Processing Systems, Denver CO, USA, 1999: 1057–1063. -