一级黄色片免费播放|中国黄色视频播放片|日本三级a|可以直接考播黄片影视免费一级毛片

高級(jí)搜索

留言板

尊敬的讀者、作者、審稿人, 關(guān)于本刊的投稿、審稿、編輯和出版的任何問(wèn)題, 您可以本頁(yè)添加留言。我們將盡快給您答復(fù)。謝謝您的支持!

姓名
郵箱
手機(jī)號(hào)碼
標(biāo)題
留言?xún)?nèi)容
驗(yàn)證碼

低軌衛(wèi)星通信系統(tǒng)跳波束圖案設(shè)計(jì)算法

石會(huì)鵬 郭丁 牟瑞碩 鐘奇 李方圓

石會(huì)鵬, 郭丁, 牟瑞碩, 鐘奇, 李方圓. 低軌衛(wèi)星通信系統(tǒng)跳波束圖案設(shè)計(jì)算法[J]. 電子與信息學(xué)報(bào), 2025, 47(3): 612-622. doi: 10.11999/JEIT240596
引用本文: 石會(huì)鵬, 郭丁, 牟瑞碩, 鐘奇, 李方圓. 低軌衛(wèi)星通信系統(tǒng)跳波束圖案設(shè)計(jì)算法[J]. 電子與信息學(xué)報(bào), 2025, 47(3): 612-622. doi: 10.11999/JEIT240596
SHI Huipeng, GUO Ding, MU Ruishuo, ZHONG Qi, LI Fangyuan. The Beam Hopping Pattern Design Algorithm of Low Earth Orbit Satellite Communication System[J]. Journal of Electronics & Information Technology, 2025, 47(3): 612-622. doi: 10.11999/JEIT240596
Citation: SHI Huipeng, GUO Ding, MU Ruishuo, ZHONG Qi, LI Fangyuan. The Beam Hopping Pattern Design Algorithm of Low Earth Orbit Satellite Communication System[J]. Journal of Electronics & Information Technology, 2025, 47(3): 612-622. doi: 10.11999/JEIT240596

低軌衛(wèi)星通信系統(tǒng)跳波束圖案設(shè)計(jì)算法

doi: 10.11999/JEIT240596 cstr: 32379.14.JEIT240596
基金項(xiàng)目: 國(guó)家重點(diǎn)研發(fā)計(jì)劃(2020YFB1807900)
詳細(xì)信息
    作者簡(jiǎn)介:

    石會(huì)鵬:男,高級(jí)工程師,研究方向?yàn)樾l(wèi)星無(wú)線(xiàn)電頻率資源技術(shù)管理

    郭?。耗?,高級(jí)工程師,研究方向?yàn)樾l(wèi)星工程星地一體化攻關(guān)

    牟瑞碩:男,碩士生,研究方向?yàn)榈蛙壭l(wèi)星通信

    鐘奇:男,高級(jí)工程師,研究方向?yàn)闊o(wú)線(xiàn)電監(jiān)測(cè)技術(shù)

    李方圓:女,高級(jí)工程師,研究方向?yàn)闊o(wú)線(xiàn)電技術(shù)管理與無(wú)線(xiàn)電設(shè)備檢測(cè)技術(shù)

    通訊作者:

    李方圓 lifangyuan@srtc.org.cn

  • 中圖分類(lèi)號(hào): TN927.2

The Beam Hopping Pattern Design Algorithm of Low Earth Orbit Satellite Communication System

Funds: The National Key Research and Development Program of China (2020YFB1807900)
  • 摘要: 低軌衛(wèi)星資源調(diào)度是長(zhǎng)時(shí)間的連續(xù)資源分配過(guò)程,這一過(guò)程中低軌衛(wèi)星保持高速移動(dòng),跳波束圖案的設(shè)計(jì)需要考慮星地鏈路的切換。針對(duì)這種切換,即衛(wèi)星覆蓋區(qū)域間的服務(wù)目標(biāo)遷移,所導(dǎo)致的多星資源聯(lián)合調(diào)度需求,該文提出一種資源自適應(yīng)權(quán)衡分配的多星聯(lián)合跳波束圖案設(shè)計(jì)算法。該算法通過(guò)設(shè)計(jì)星間聯(lián)合調(diào)度框架和多星聯(lián)合調(diào)度權(quán)重,將多星資源聯(lián)合分配問(wèn)題轉(zhuǎn)化為星座內(nèi)單星資源調(diào)度問(wèn)題,輕量化設(shè)計(jì)跳波束圖案。經(jīng)過(guò)與多種權(quán)重設(shè)計(jì)方法的對(duì)比驗(yàn)證,仿真結(jié)果表明,所提算法的輕量化設(shè)計(jì)思路合理,并且可以有效地保障受遷移影響區(qū)域內(nèi)小區(qū)的服務(wù)質(zhì)量,可為低軌衛(wèi)星系統(tǒng)長(zhǎng)時(shí)資源調(diào)度設(shè)計(jì)提供參考。
  • 圖  1  低軌衛(wèi)星跳波束系統(tǒng)模型

    圖  2  星間聯(lián)合調(diào)度區(qū)

    圖  3  中心衛(wèi)星不同負(fù)載率下的仿真結(jié)果

    圖  4  遷入衛(wèi)星不同負(fù)載率下的仿真結(jié)果

    圖  5  遷出衛(wèi)星不同負(fù)載率下的仿真結(jié)果

    1  RATMJ-BHP算法

     1 輸入:$ {G_{\rm{th}}} $
     2 初始化:$ \forall s \in \mathcal{S},{{\boldsymbol{X}}_s} = \varnothing $,$ \forall k \in (1,K),{{\mathcal{N}}}_{{\mathrm{sort}}}^{(k)} = \varnothing $
     3 For $ t = 1,2, \cdots ,T $
     4  If $ \forall s \in \mathcal{S},{\text{ }}\exists {t^{'}} \in \iota _s^{({\mathrm{in}})},{\text{ }}{\mathrm{s.t}}.{\text{ }}{t^{'}} = = t{\text{ or }}\exists {t^{''}} \in \iota _s^{({\mathrm{out}})} $,
       ${\mathrm{s.t.}}{\text{ }}{t^{''}} = = t{\text{ }} $
     5   $ {{\mathcal{N}}}_s^{(t)} = {{\mathcal{N}}}_s^{(t)} + {{\mathcal{N}}}_s^{({t^{'}})} - {{\mathcal{N}}}_s^{({t^{''}})} $, $ {{\mathcal{N}}}_{{\mathrm{set}}}^{(s)} = {{\mathcal{N}}}_s^{(t)} $
     6   根據(jù)式(11)和式(12)更新$ \sigma _{s,t}^{({\mathrm{out}})} $, $ \sigma _{s,t}^{({\mathrm{in}})} $
     7  End If
     8  $ \forall {n_s} \in {{\mathcal{N}}}_s^{(t)} $,根據(jù)式(20)和式(21)計(jì)算$ \overline \beta _{{n_s}}^{(t)} $,式(23)和
       式(24)計(jì)算$ \overline D _{{n_s}}^{(t)} $
     9  For $ k = 1,2, \cdots ,K $
     10   For $ s = 1,2, \cdots ,S $
     11    If $ D_{{\mathrm{now}},{n_s}}^{(t)} > R_{{\mathrm{unit}}}^{({n_s})} $
     12     依據(jù)策略(3)和(4)計(jì)算$ \varpi _{{n_s}}^{(t)} $,選擇候選服務(wù)小區(qū)$ n_s^{'} $
     13     $ n_s^{'} \leftarrow {{\mathcal{N}}}_{{\mathrm{set}}}^{(s)} $;$ {{\mathcal{N}}}_{{\mathrm{sort}}}^{(k)} \leftarrow n_s^{'} $
     14    Else
     15     依據(jù)策略(1)和(2)計(jì)算$ \varpi _{{n_s}}^{(t)} $,并選擇候選服務(wù)小區(qū)$ n_s^{'} $
     16     $ n_s^{'} \leftarrow {{\mathcal{N}}}_{{\mathrm{set}}}^{(s)} $;$ {{\mathcal{N}}}_{{\mathrm{sort}}}^{(k)} \leftarrow n_s^{'} $
     17    End If
     18   End For
     19   依據(jù)4種策略對(duì)$ {{\mathcal{N}}}_{{\mathrm{sort}}}^{(k)} $中的小區(qū)排序
     20   While $ {{\mathcal{N}}}_{{\mathrm{sort}}}^{(k)} \ne \varnothing $
     21    選擇$ {{\mathcal{N}}}_{{\mathrm{sort}}}^{(k)} $中的第一個(gè)小區(qū)$ n_s^{'} $。
     22    If $ \exists {n_{{s_1}}},\max \left\{ {G_{k_s^{'},{k_{{s_1}}}}^{({\rm{tx}})},G_{{k_{{s_1}}},k_s^{'}}^{({\rm{tx}})}} \right\} \ge {G_{\rm{th}}} $,
         $ {s_1} \in \mathcal{S},{n_{{s_1}}} \in {{\boldsymbol{X}}_{{s_1}}},{k_s} \ne {k_{{s_1}}} $
     23     $ n_s^{'} \leftarrow {{\mathcal{N}}}_{{\mathrm{sort}}}^{(k)} $
     24     對(duì)于衛(wèi)星$ s $,轉(zhuǎn)至步驟11,
     25    Else
     26     $ x_{k_s^{'}}^{(t)} = n_s^{'} $
     27     $ n_s^{'} \leftarrow {{\mathcal{N}}}_{{\mathrm{sort}}}^{(k)} $
     28    End If
     29   End While
     30 End For
     31 End For
     32 輸出跳波束圖案$ {{\boldsymbol{X}}_1},{{\boldsymbol{X}}_2}, \cdots ,{{\boldsymbol{X}}_s},s \in \mathcal{S} $
    下載: 導(dǎo)出CSV

    表  1  仿真參數(shù)

    參數(shù)
    衛(wèi)星數(shù)目 3
    高度(km) 508
    衛(wèi)星初始經(jīng)度(°) [–3.81, 0.65, 5.55]
    衛(wèi)星初始緯度(°) [26.45, 31.01, 35.39]
    初始小區(qū)數(shù)目 [38, 37, 40]
    衛(wèi)星遷出、遷入小區(qū)數(shù)目 [3, 4, 4, 4, 4, 3]
    載波頻率(MHz) 1 990
    帶寬(MHz) 40
    星上總功率(dBW) 14
    接收機(jī)天線(xiàn)模型 全向天線(xiàn)
    極化方式 圓極化
    業(yè)務(wù)包大小(MHz) 2
    波束數(shù)目 8
    跳波束時(shí)隙長(zhǎng)度(ms) 30
    跳波束周期長(zhǎng)度(時(shí)隙) 35
    時(shí)延門(mén)限(時(shí)隙) 5
    干擾增益門(mén)限(dBi) 10
    下載: 導(dǎo)出CSV

    表  2  相控陣天線(xiàn)參數(shù)

    參數(shù) 參數(shù)值
    最大陣元增益(dBi) 5
    陣元水平方向3 dB波束寬度(°) 65
    陣元垂直方向3 dB波束寬度(°) 65
    前后比(dB) 30
    陣元水平方向間隔 0.5
    陣元垂直方向間隔 0.5
    水平方向陣元數(shù)目 32
    垂直方向陣元數(shù)目 32
    下載: 導(dǎo)出CSV

    表  3  迭代次數(shù)

    衛(wèi)星數(shù)目 1 2 3
    平均迭代次數(shù) 28.1 32.29 36.95
    最大迭代次數(shù) 31.58 35.71 39.05
    枚舉法 $ {\mathrm{C}}_{{\text{38}}}^{\text{8}} $ $ {\mathrm{C}}_{{\text{38}}}^{\text{8}} \cdot {\mathrm{C}}_{{\text{37}}}^{\text{8}} $ $ {\mathrm{C}}_{{\text{38}}}^{\text{8}} \cdot {\mathrm{C}}_{{\text{37}}}^{\text{8}} \cdot {\mathrm{C}}_{{\text{40}}}^{\text{8}} $
    下載: 導(dǎo)出CSV
  • [1] FARREA K A, BAIG Z, DOSS R, et al. Low earth orbit (LEO) satellites role in shaping 6G networks amidst emerging threats[C]. 2023 IEEE Future Networks World Forum, Baltimore, USA, 2023: 1–8. doi: 10.1109/FNWF58287.2023.10520636.
    [2] MENG Entong, YU Jihong, JIN Song, et al. Resource allocation for MC-DS-CDMA in beam-hopping LEO satellite networks[J]. IEEE Transactions on Aerospace and Electronic Systems, 2024, 60(3): 3611–3624. doi: 10.1109/TAES.2024.3367796.
    [3] YANG Haowen, YANG Dewei, LI Yuanjun, et al. Cluster-Based beam hopping for energy efficiency maximization in flexible multibeam satellite systems[J]. IEEE Communications Letters, 2023, 27(12): 3300–3304. doi: 10.1109/LCOMM.2023.3314671.
    [4] NADERI F and CAMPANELLA S. NASA’s Advanced Communications Technology Satellite (ACTS)-An overview of the satellite, the network, and the underlying technologies[C]. The 12th International Communication Satellite Systems Conference, Arlington, USA, 1988: 797. doi: 10.2514/6.1988-797.
    [5] ANGELETTI P, FERNANDEZ PRIM D, and RINALDO R. Beam hopping in multi-beam broadband satellite systems: System performance and payload architecture analysis[C]. The 24th AIAA International Communications Satellite Systems Conference, San Diego, USA, 2006: 5376. doi: 10.2514/6.2006-5376.
    [6] 唐璟宇, 李廣俠, 邊東明, 等. 衛(wèi)星跳波束資源分配綜述[J]. 移動(dòng)通信, 2019, 43(5): 21–26. doi: 10.3969/j.issn.1006-1010.2019.05.004.

    TANG Jingyu, LI Guangxia, BIAN Dongming, et al. Review on resource allocation for beam-hopping satellite[J]. Mobile Communications, 2019, 43(5): 21–26. doi: 10.3969/j.issn.1006-1010.2019.05.004.
    [7] WANG Yaxin, BIAN Dongming, HU Jing, et al. A flexible resource allocation algorithm in full bandwidth beam hopping satellite systems[C]. 2019 IEEE 3rd Advanced Information Management, Communicates, Electronic and Automation Control Conference, Chongqing, China, 2019: 920–927. doi: 10.1109/IMCEC46724.2019.8984132.
    [8] LIN Zhiyuan, NI Zuyao, KUANG Linling, et al. NGSO satellites beam hopping strategy based on load balancing and interference avoidance for coexistence with GSO systems[J]. IEEE Communications Letters, 2023, 27(1): 278–282. doi: 10.1109/LCOMM.2022.3213912.
    [9] LI Weibiao, ZENG Ming, WANG Xinyao, et al. Dynamic beam hopping of double LEO multi-beam satellite based on determinant point process[C]. 2022 14th International Conference on Wireless Communications and Signal Processing, Nanjing, China, 2022: 713–718. doi: 10.1109/WCSP55476.2022.10039244.
    [10] 劉子祎, 張校寧, 費(fèi)澤松. 面向低軌衛(wèi)星的長(zhǎng)時(shí)多星跳波束功率分配技術(shù)[J]. 天地一體化信息網(wǎng)絡(luò), 2023, 4(4): 38–48. doi: 10.11959/j.issn.2096-8930.2023041.

    LIU Ziyi, ZHANG Xiaoning, and FEI Zesong. Power allocation technology of long time multi-star hopping beam for LEO satellite[J]. Space-Integrated-Ground Information Networks, 2023, 4(4): 38–48. doi: 10.11959/j.issn.2096-8930.2023041.
    [11] GINESI A, RE E, and ARAPOGLOU P D. Joint beam hopping and precoding in HTS systems[C]. The 9th International Conference on Wireless and Satellite Systems, Oxford, UK, 2018: 43–51. doi: 10.1007/978-3-319-76571-6_5.
    [12] TANG Jingyu, BIAN Dongming, LI Guangxia, et al. Optimization method of dynamic beam position for LEO beam-hopping satellite communication systems[J]. IEEE Access, 2021, 9: 57578–57588. doi: 10.1109/ACCESS.2021.3072104.
    [13] ITU. ITU-R M. 618-14 Propagation data and prediction methods required for the design of Earth-space telecommunication systems[S]. Geneva: ITU, 2023.
    [14] 盧月. 基于跳波束干擾規(guī)避的LEO衛(wèi)星多域資源聯(lián)合優(yōu)化[D]. [碩士論文], 哈爾濱工業(yè)大學(xué), 2023.

    LU Yue. Joint optimization of LEO satellites multi-domain resources based on beam hopping interference avoidance[D]. [Master dissertation], Harbin Institute of Technology, 2023.
    [15] ITU. ITU-R M. 2101-0 Modelling and simulation of IMT networks and systems for use in sharing and compatibility studies: Recommendation[S]. Geneva: ITU, 2017.
    [16] PANDA S K and JANA P K. Efficient task scheduling algorithms for heterogeneous multi-cloud environment[J]. The Journal of Supercomputing, 2015, 71(4): 1505–1533. doi: 10.1007/s11227-014-1376-6.
    [17] Space radiocommunications stations database (the 3001st edition)[DB/CD]. Geneva: ITU, 2024.
    [18] 蔡輝. 基于衛(wèi)星跳波束技術(shù)的資源分配方法研究[D]. [碩士論文], 中國(guó)航天科技集團(tuán)公司第五研究院西安分院, 2023.

    CAI Hui. Research on resource allocation method based on satellite beam hopping technology[D]. [Master dissertation], China Academy of Space Technology, 2023.
    [19] 丁祥, 續(xù)欣, 張森柏, 等. 業(yè)務(wù)自適應(yīng)的衛(wèi)星跳波束系統(tǒng)資源分配方法[J]. 陸軍工程大學(xué)學(xué)報(bào), 2022, 1(3): 29–35. doi: 10.12018/j.issn.2097-0730.20210121001.

    DING Xiang, XU Xin, ZHANG Senbai, et al. Service-adaptive resource allocation method for satellite beam-hopping systems[J]. Journal of Army Engineering University of PLA, 2022, 1(3): 29–35. doi: 10.12018/j.issn.2097-0730.20210121001.
  • 加載中
圖(5) / 表(4)
計(jì)量
  • 文章訪問(wèn)數(shù):  336
  • HTML全文瀏覽量:  142
  • PDF下載量:  60
  • 被引次數(shù): 0
出版歷程
  • 收稿日期:  2024-07-15
  • 修回日期:  2025-02-24
  • 網(wǎng)絡(luò)出版日期:  2025-03-04
  • 刊出日期:  2025-03-01

目錄

    /

    返回文章
    返回