一级黄色片免费播放|中国黄色视频播放片|日本三级a|可以直接考播黄片影视免费一级毛片

高級搜索

留言板

尊敬的讀者、作者、審稿人, 關(guān)于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復(fù)。謝謝您的支持!

姓名
郵箱
手機號碼
標(biāo)題
留言內(nèi)容
驗證碼

基于主動波導(dǎo)不變量分布的改進擴展卡爾曼濾波跟蹤方法

孫同晶 朱慶煜 王治撰

孫同晶, 朱慶煜, 王治撰. 基于主動波導(dǎo)不變量分布的改進擴展卡爾曼濾波跟蹤方法[J]. 電子與信息學(xué)報, 2025, 47(1): 167-177. doi: 10.11999/JEIT240595
引用本文: 孫同晶, 朱慶煜, 王治撰. 基于主動波導(dǎo)不變量分布的改進擴展卡爾曼濾波跟蹤方法[J]. 電子與信息學(xué)報, 2025, 47(1): 167-177. doi: 10.11999/JEIT240595
SUN Tongjing, ZHU Qingyu, WANG Zhizhuan. Improved Extended Kalman Filter Tracking Method Based On Active Waveguide Invariant Distribution[J]. Journal of Electronics & Information Technology, 2025, 47(1): 167-177. doi: 10.11999/JEIT240595
Citation: SUN Tongjing, ZHU Qingyu, WANG Zhizhuan. Improved Extended Kalman Filter Tracking Method Based On Active Waveguide Invariant Distribution[J]. Journal of Electronics & Information Technology, 2025, 47(1): 167-177. doi: 10.11999/JEIT240595

基于主動波導(dǎo)不變量分布的改進擴展卡爾曼濾波跟蹤方法

doi: 10.11999/JEIT240595 cstr: 32379.14.JEIT240595
基金項目: 國家自然科學(xué)基金聯(lián)合基金(U22A2044)
詳細信息
    作者簡介:

    孫同晶:女,博士,教授,研究方向為信號處理,信息融合,目標(biāo)定位和跟蹤

    朱慶煜:男,碩士生,研究方向為信號處理和模式識別

    王治撰:男,博士生,高級工程師,研究方向為水下目標(biāo)回波特性和海洋環(huán)境特性研究

    通訊作者:

    王治撰 15142594278@163.com

  • 中圖分類號: TN011.6

Improved Extended Kalman Filter Tracking Method Based On Active Waveguide Invariant Distribution

Funds: The Joint Foundation of National Natural Science Foundation of China (U22A2044)
  • 摘要: 在復(fù)雜的海洋環(huán)境中,目標(biāo)的可知信息受環(huán)境噪聲、混響等的干擾嚴重,導(dǎo)致目標(biāo)跟蹤效果較差,而從這些干擾中提取目標(biāo)的可利用特征及其困難。該文將目標(biāo)與環(huán)境的耦合特征融入目標(biāo)跟蹤算法中,提出了一種基于主動波導(dǎo)不變量分布的改進擴展卡爾曼濾波跟蹤方法。首先基于淺海波導(dǎo)中目標(biāo)散射特性基本理論,推導(dǎo)了收發(fā)分置條件下的主動波導(dǎo)不變量表征的數(shù)學(xué)模型,獲得了距離、頻率以及主動波導(dǎo)不變量分布的約束關(guān)系;然后將該約束加入到擴展卡爾曼濾波的狀態(tài)向量中,通過增加新的約束來提高目標(biāo)運動模型與真實目標(biāo)運動軌跡的契合度進而提高目標(biāo)跟蹤的精度;最后通過仿真實驗和實測數(shù)據(jù)驗證了該方法的跟蹤性能,結(jié)果顯示:該方法較常規(guī)擴展卡爾曼濾波跟蹤方法能夠更好地提高目標(biāo)跟蹤精度,仿真中結(jié)果的優(yōu)化率約能達到50%,實測數(shù)據(jù)處理結(jié)果的優(yōu)化率約在60%左右。
  • 圖  1  主動聲吶工作模式

    圖  2  仿真條紋與運動軌跡對比

    圖  3  仿真工況

    圖  4  基于仿真模型的目標(biāo)跟蹤實現(xiàn)流程

    圖  5  仿真的聲場干涉條紋圖

    圖  6  Radon變換過程

    圖  7  主動波導(dǎo)不變量分布圖

    圖  8  仿真結(jié)果

    圖  9  試驗布放及工況

    圖  10  聲場干涉條紋結(jié)果圖

    圖  11  截取條紋圖的$\gamma $分布的提取過程

    圖  12  試驗結(jié)果

    表  1  3種算法仿真的估計位置與真值誤差表(m)

    算法 估計位置和真值偏差-均值 估計位置和真值偏差-峰值
    EKF 0.19 0.25
    IEKF 0.13 0.19
    ID-EKF 0.09 0.13
    下載: 導(dǎo)出CSV

    表  2  算法仿真對比優(yōu)化表(%)

    對比算法 均值優(yōu)化率 峰值優(yōu)化率
    IEKF相對EKF 31.58 24.00
    ID-EKF相對EKF 52.63 48.00
    ID-EKF相對IEKF 30.77 31.58
    下載: 導(dǎo)出CSV

    表  3  測試參數(shù)及目標(biāo)

    信號參數(shù)目標(biāo)及其運動狀態(tài)
    信號形式頻率(kHz)脈沖間隔(ms)脈寬(ms)采樣率(kHz)球體目標(biāo)模型(1.2 m直徑),由近及遠運動
    LFM40~804005512
    下載: 導(dǎo)出CSV

    表  4  3種算法試驗的估計位置與真值誤差表(m)

    算法 估計位置和真值偏差-均值 估計位置和真值偏差-峰值
    EKF 0.195 0.256
    IEKF 0.142 0.187
    ID-EKF 0.079 0.095
    下載: 導(dǎo)出CSV

    表  5  算法試驗對比優(yōu)化表(%)

    算法對比 均值優(yōu)化率 峰值優(yōu)化率
    IEKF相對EKF 27.179 26.953
    ID-EKF相對EKF 59.487 62.891
    ID-EKF相對IEKF 44.366 49.197
    下載: 導(dǎo)出CSV
  • [1] 郭戈, 王興凱, 徐慧樸. 基于聲吶圖像的水下目標(biāo)檢測、識別與跟蹤研究綜述[J]. 控制與決策, 2018, 33(5): 906–922. doi: 10.13195/j.kzyjc.2017.1678.

    GUO Ge, WANG Xingkai, and XU Huipu. Review on underwater target detection, recognition and tracking based on sonar image[J]. Control and Decision, 2018, 33(5): 906–922. doi: 10.13195/j.kzyjc.2017.1678.
    [2] KALMAN R E and BUCY R S. New results in linear filtering and prediction theory[J]. Journal of Basic Engineering, 1961, 83(1): 95–108. doi: 10.1115/1.3658902.
    [3] KALMAN R E. A new approach to linear filtering and prediction problems[J]. Journal of Basic Engineering, 1960, 82(1): 35–45. doi: 10.1115/1.3662552.
    [4] LI Tiancheng, SU Jinya, LIU Wei, et al. Approximate Gaussian conjugacy: Parametric recursive filtering under nonlinearity, multimodality, uncertainty, and constraint, and beyond[J]. Frontiers of Information Technology & Electronic Engineering, 2017, 18(12): 1913–1939. doi: 10.1631/FITEE.1700379.
    [5] 周云, 胡錦楠, 趙瑜, 等. 基于卡爾曼濾波改進壓縮感知算法的車輛目標(biāo)跟蹤[J]. 湖南大學(xué)學(xué)報: 自然科學(xué)版, 2023, 50(1): 11–21. doi: 10.16339/j.cnki.hdxbzkb.2023002.

    ZHOU Yun, HU Jinnan, ZHAO Yu, et al. Vehicle target tracking based on Kalman filtering improved compressed sensing algorithm[J]. Journal of Hunan University: Natural Sciences, 2023, 50(1): 11–21. doi: 10.16339/j.cnki.hdxbzkb.2023002.
    [6] 白冬杰. 車載毫米波雷達多目標(biāo)跟蹤算法研究[D]. [碩士論文], 北京交通大學(xué), 2019.

    BAI Dongjie. Research on multi-target tracking algorithm of vehicle-mounted millimeter-wave radar[D]. [Master dissertation], Beijing Jiaotong University, 2019.
    [7] 吳葉麗, 行鴻彥, 侯天浩, 等. 基于改進自適應(yīng)擴展卡爾曼濾波的高精度姿態(tài)解算[J]. 探測與控制學(xué)報, 2023, 45(6): 69–76.

    WU Yeli, XiNG Hongyan, HOU Tianhao, et al. An improved adaptive extended Kalman filter for high precision attitude solution[J]. Journal of Detection & Control, 2023, 45(6): 69–76.
    [8] 成春彥, 李亞安. EKF和UKF算法在雙觀測站純方位目標(biāo)跟蹤中的應(yīng)用[J]. 水下無人系統(tǒng)學(xué)報, 2023, 31(3): 388–397. doi: 10.11993/j.issn.2096-3920.202203014.

    CHENG Chunyan and LI Yaan. Applications of EKF and UKF algorithms in bearings-only target tracking with a double observation stations[J]. Journal of Unmanned Undersea Systems, 2023, 31(3): 388–397. doi: 10.11993/j.issn.2096-3920.202203014.
    [9] 丁凱. 基于前視聲納的水下目標(biāo)跟蹤技術(shù)研究[D]. [碩士論文], 哈爾濱工程大學(xué), 2006. doi: 10.7666/d.y936424.

    DING Kai. Research on tracking of underwater object based on forward-looking sonar[D]. [Master dissertation], Harbin Engineering University, 2006. doi: 10.7666/d.y936424.
    [10] CHUPROV S D. Interference structure of a sound field in a layered ocean[M]. BREKHOVSKIKH L M and ANDREEVOI L B. Ocean Acoustics: Current State. Moscow: Nauka, 1982: 71–91.
    [11] BROOKS L A, KIDNER M R F, ZANDER A C, et al. Techniques for extraction of the waveguide invariant from interference patterns in spectrograms[C]. ACOUSTICS 2006, Christchurch, New Zealand, 2006: 445.
    [12] SELL A W and LEE CULVER R. Waveguide invariant analysis for modeling time-frequency striations in a range-dependent environment[J]. The Journal of the Acoustical Society of America, 2011, 129(S4): 2509. doi: 10.1121/1.3588287.
    [13] TURGUT A, ORR M, and ROUSEFF D. Broadband source localization using horizontal-beam acoustic intensity striations[J]. The Journal of the Acoustical Society of America, 2010, 127(1): 73–83. doi: 10.1121/1.3257211.
    [14] 李永飛, 郭瑞明, 趙航芳. 淺海內(nèi)波環(huán)境下聲場干涉條紋的稀疏重建[J]. 物理學(xué)報, 2023, 72(7): 074301. doi: 10.7498/aps.72.20221932.

    LI Yongfei, GUO Ruiming, and ZHAO Hangfang. Sparse reconstruction of acoustic interference fringes in shallow water and internal wave environment[J]. Acta Physica Sinica, 2023, 72(7): 074301. doi: 10.7498/aps.72.20221932.
    [15] 余赟, 惠俊英, 殷敬偉, 等. 基于波導(dǎo)不變量的目標(biāo)運動參數(shù)估計及被動測距[J]. 聲學(xué)學(xué)報, 2011, 36(3): 258–264. doi: 10.15949/j.cnki.0371-0025.2011.03.015.

    YU Yun, HUI Junying, YIN Jingwei, et al. Moving target parameter estimation and passive ranging based on waveguide invariant theory[J]. Acta Acustica, 2011, 36(3): 258–264. doi: 10.15949/j.cnki.0371-0025.2011.03.015.
    [16] 宋雪晶. 基于聲場干涉結(jié)構(gòu)的水聲目標(biāo)被動定位技術(shù)[D]. [博士論文], 哈爾濱工程大學(xué), 2017.

    SONG Xuejing. Underwater acoustic target passive localization techniques based on acoustic field interference structure[D]. [Ph. D. dissertation], Harbin Engineering University, 2017.
    [17] QUIJANO J E, ZURK L M, and ROUSEFF D. Demonstration of the invariance principle for active sonar[J]. The Journal of the Acoustical Society of America, 2008, 123(3): 1329–1337. doi: 10.1121/1.2836763.
    [18] QUIJANO J E, CAMPBELL R L JR, OESTERLEIN T G, et al. Experimental observations of active invariance striations in a tank environment[J]. The Journal of the Acoustical Society of America, 2010, 128(2): 611–618. doi: 10.1121/1.3455813.
    [19] ZURK L M and ROUSEFF D. Striation-based beamforming for active sonar with a horizontal line array[J]. The Journal of the Acoustical Society of America, 2012, 132(4): EL264–EL270. doi: 10.1121/1.4748281.
    [20] HE Chensong, QUIJANO J E, and ZURK L M. Enhanced Kalman filter algorithm using the invariance principle[J]. IEEE Journal of Oceanic Engineering, 2009, 34(4): 575–585. doi: 10.1109/joe.2009.2028058.
    [21] 芬恩·B·延森, 威廉·A·庫珀曼, 米切爾·B·波特, 等, 周利生, 王魯軍, 杜栓平, 譯. 計算海洋聲學(xué)[M]. 2版. 北京: 國防工業(yè)出版社, 2018: 54–57, 267–269.

    JENSEN F B, KUPERMAN W A, POTER M B, et al, ZHOU Lisheng, WANG Lujun, and DU Shuanping. translation. Computational Ocean Acoustics[M]. 2nd ed. Beijing: National Defense Industry Press, 2018: 54–57, 267–269.
    [22] 林萌, 李翠華, 黃劍航. 基于Radon變換的運動模糊圖像參數(shù)估計[J]. 計算機技術(shù)與發(fā)展, 2008, 18(1): 33–36. doi: 10.3969/j.issn.1673-629X.2008.01.009.

    LIN Meng, LI Cuihua, and HUANG Jianhang. Parameters estimation of motion blurred images based on radon transform[J]. Computer Technology and Development, 2008, 18(1): 33–36. doi: 10.3969/j.issn.1673-629X.2008.01.009.
  • 加載中
圖(12) / 表(5)
計量
  • 文章訪問數(shù):  307
  • HTML全文瀏覽量:  103
  • PDF下載量:  39
  • 被引次數(shù): 0
出版歷程
  • 收稿日期:  2024-07-12
  • 修回日期:  2024-12-04
  • 網(wǎng)絡(luò)出版日期:  2024-12-07
  • 刊出日期:  2025-01-31

目錄

    /

    返回文章
    返回