一级黄色片免费播放|中国黄色视频播放片|日本三级a|可以直接考播黄片影视免费一级毛片

高級(jí)搜索

留言板

尊敬的讀者、作者、審稿人, 關(guān)于本刊的投稿、審稿、編輯和出版的任何問(wèn)題, 您可以本頁(yè)添加留言。我們將盡快給您答復(fù)。謝謝您的支持!

姓名
郵箱
手機(jī)號(hào)碼
標(biāo)題
留言?xún)?nèi)容
驗(yàn)證碼

一種基于合作協(xié)同進(jìn)化的智能超表面輔助無(wú)人機(jī)通信系統(tǒng)聯(lián)合波束成形方法

仲偉志 萬(wàn)詩(shī)晴 段洪濤 范振雄 林志鵬 黃洋 毛開(kāi)

仲偉志, 萬(wàn)詩(shī)晴, 段洪濤, 范振雄, 林志鵬, 黃洋, 毛開(kāi). 一種基于合作協(xié)同進(jìn)化的智能超表面輔助無(wú)人機(jī)通信系統(tǒng)聯(lián)合波束成形方法[J]. 電子與信息學(xué)報(bào), 2025, 47(2): 334-343. doi: 10.11999/JEIT240561
引用本文: 仲偉志, 萬(wàn)詩(shī)晴, 段洪濤, 范振雄, 林志鵬, 黃洋, 毛開(kāi). 一種基于合作協(xié)同進(jìn)化的智能超表面輔助無(wú)人機(jī)通信系統(tǒng)聯(lián)合波束成形方法[J]. 電子與信息學(xué)報(bào), 2025, 47(2): 334-343. doi: 10.11999/JEIT240561
ZHONG Weizhi, WAN Shiqing, DUAN Hongtao, FAN Zhenxiong, LIN Zhipeng, HUANG Yang, MAO Kai. A Joint Beamforming Method Based on Cooperative Co-evolutionary in Reconfigurable Intelligent Surface-Assisted Unmanned Aerial Vehicle Communication System[J]. Journal of Electronics & Information Technology, 2025, 47(2): 334-343. doi: 10.11999/JEIT240561
Citation: ZHONG Weizhi, WAN Shiqing, DUAN Hongtao, FAN Zhenxiong, LIN Zhipeng, HUANG Yang, MAO Kai. A Joint Beamforming Method Based on Cooperative Co-evolutionary in Reconfigurable Intelligent Surface-Assisted Unmanned Aerial Vehicle Communication System[J]. Journal of Electronics & Information Technology, 2025, 47(2): 334-343. doi: 10.11999/JEIT240561

一種基于合作協(xié)同進(jìn)化的智能超表面輔助無(wú)人機(jī)通信系統(tǒng)聯(lián)合波束成形方法

doi: 10.11999/JEIT240561 cstr: 32379.14.JEIT240561
基金項(xiàng)目: 國(guó)家自然科學(xué)基金(62217250),江蘇省重點(diǎn)研發(fā)計(jì)劃(產(chǎn)業(yè)前瞻與關(guān)鍵核心技術(shù))(BE2022067, BE2022067-1, BE2022067-3),南京航空航天大學(xué)研究生科研與實(shí)踐創(chuàng)新計(jì)劃(xcxjh20231507)
詳細(xì)信息
    作者簡(jiǎn)介:

    仲偉志:女,副教授,研究方向?yàn)楦哳l通信、無(wú)人機(jī)通信、頻譜感知等

    萬(wàn)詩(shī)晴:女,碩士生,研究方向?yàn)闊o(wú)人機(jī)通信、可重構(gòu)智能表面聯(lián)合波束賦形

    段洪濤:男,正高級(jí)工程師,研究方向?yàn)闊o(wú)人機(jī)通信與反制,頻譜管理,短波及超短波監(jiān)測(cè)等

    范振雄:男,高級(jí)工程師,研究方向?yàn)闊o(wú)人機(jī)通信與反制,超短波干擾定位及查找,短波測(cè)向等

    林志鵬:男,副研究員,研究方向?yàn)楦呔S信道參數(shù)估計(jì)、大規(guī)模陣列信號(hào)處理、無(wú)人機(jī)通信、頻譜信號(hào)感知及重構(gòu)等

    黃洋:男,副教授,研究方向?yàn)殡姶挪┺?、頻譜管控、物聯(lián)網(wǎng)技術(shù)、B5G及未來(lái)無(wú)線網(wǎng)絡(luò)等

    毛開(kāi):男,博士生,研究方向?yàn)樾诺罍y(cè)量與建模

    通訊作者:

    仲偉志 zhongwz@nuaa.edu.cn

  • 中圖分類(lèi)號(hào): TN929

A Joint Beamforming Method Based on Cooperative Co-evolutionary in Reconfigurable Intelligent Surface-Assisted Unmanned Aerial Vehicle Communication System

Funds: The National Natural Science Foundation of China (62271250), The Key Technologies R&D Program of Jiangsu (Prospective and Key Technologies for Industry) (BE2022067, BE2022067-1, BE2022067-3), The Postgraduate Research and Practice Innovation Program of Nanjing University of Aeronautics and Astronautics (xcxjh20231507)
  • 摘要: 針對(duì)傳統(tǒng)聯(lián)合波束成形方法在智能超表面(RIS)輔助無(wú)人機(jī)(UAV)通信系統(tǒng)優(yōu)化中存在的局限性,包括針對(duì)RIS僅考慮相移矩陣優(yōu)化、優(yōu)化方法缺乏應(yīng)用普適性等問(wèn)題,該文面向RIS輔助無(wú)人機(jī)通信服務(wù)多用戶(hù)場(chǎng)景,創(chuàng)新性提出一種基于合作協(xié)同進(jìn)化(CCEA)的聯(lián)合波束優(yōu)化方法。該方法利用兩個(gè)子種群的獨(dú)立進(jìn)化將聯(lián)合波束成形問(wèn)題分解成RIS反射波波束設(shè)計(jì)和發(fā)射端波束設(shè)計(jì)兩個(gè)子問(wèn)題進(jìn)行求解,通過(guò)進(jìn)化過(guò)程中的信息交互與協(xié)作來(lái)實(shí)現(xiàn)聯(lián)合波束成形設(shè)計(jì)。數(shù)值仿真結(jié)果表明,相較于僅考慮RIS相移矩陣設(shè)計(jì)的聯(lián)合波束優(yōu)化,CCEA通過(guò)設(shè)計(jì)RIS反射波波束形狀改變了反射波在3維空間中的能量分布,進(jìn)而提升了接收端信干噪比(SINR)和頻譜效率;此外,基于種群的CCEA算法能夠產(chǎn)生更加多樣的解,因此在UAV和用戶(hù)的不同位置設(shè)置下均能實(shí)現(xiàn)反射波對(duì)用戶(hù)方向的有效覆蓋,相對(duì)于傳統(tǒng)方法能夠避免局部最優(yōu)、具有更強(qiáng)的應(yīng)用普適性。
  • 圖  1  RIS輔助無(wú)人機(jī)MU-MISO通信系統(tǒng)

    圖  2  CCEA性能比較

    圖  3  不同UAV、用戶(hù)位置下得到的RIS反射波波束方向圖

    圖  4  不同RIS陣元設(shè)置下系統(tǒng)頻譜效率

    1  基于CCEA的RIS輔助無(wú)人機(jī)通信聯(lián)合波束成形優(yōu)化算法

     (1)輸入初始位置信息${{\boldsymbol{w}}_{\rm{U}}},{{\boldsymbol{w}}_{\rm{R}}},{{\boldsymbol{w}}_k}$和其他基本系統(tǒng)參數(shù);獲得
     $ {{\boldsymbol{H}}_{{\mathrm{U}} {\text{-}}{\mathrm{ R}}}} $, $ {{\boldsymbol{h}}_{{\mathrm{R}}{\text{-}} k}} $, ${{\boldsymbol{h}}_{{\mathrm{U}} {\text{-}} k}}$
     (2)根據(jù)式(16)及式(9)生成初始子種群:
     ${\bf{pop}}_0^{\boldsymbol{\varPhi}} = [{{\boldsymbol{\varPhi}} _1},{{\boldsymbol{\varPhi}} _2},\cdots,{{\boldsymbol{\varPhi}} _{{\text{pop}}}}]$, $ {\bf{pop}}_0^{\boldsymbol{G}} = [{{\boldsymbol{G}}_1},{{\boldsymbol{G}}_2},\cdots,{{\boldsymbol{G}}_{{\text{pop}}}}] $
     (3)隨機(jī)初始化兩個(gè)子種群的代表解${{\boldsymbol{\varPhi}} _{{\text{best}}}}$, $ {{\boldsymbol{G}}_{{\text{best}}}} $
     (4)根據(jù)式(17)計(jì)算兩個(gè)子種群組合解的初始綜合適應(yīng)度,并將子種群中的個(gè)體根據(jù)綜合適應(yīng)度排序,即
     $\begin{aligned} {\text{Fitnes}}{{\text{s}}_1}({\bf{pop}}_0^{\boldsymbol{\varPhi}} ;{{\boldsymbol{G}}_{{\text{best}}}}) =\;& [{\text{Fitness}}({{\boldsymbol{\varPhi}} _1},{{\boldsymbol{G}}_{{\text{best}}}}),\cdots,\\& {\text{Fitness}}({{\boldsymbol{\varPhi}} _{{\text{pop}}}},{{\boldsymbol{G}}_{{\text{best}}}})]\end{aligned}$
      $\begin{aligned} {\text{Fitnes}}{{\text{s}}_2}({{\boldsymbol{\varPhi}} _{{\text{best}}}};{\bf{pop}}_0^{\boldsymbol{G}}) = \;& [{\text{Fitness}}({{\boldsymbol{\varPhi}} _{{\text{best}}}},{{\boldsymbol{G}}_1}),\cdots,\\& {\text{Fitness}}({{\boldsymbol{\varPhi}} _{{\text{best}}}},{{\boldsymbol{G}}_{{\text{pop}}}})]\end{aligned}$
     (5)for i = 1, 2, ···, inter do
     (6)  從${\bf{pop}}_{i - 1}^{\boldsymbol{\varPhi}} $和$ {\bf{pop}}_{i - 1}^{\boldsymbol{G}} $選擇${\text{pop}} \times {\text{Selectrate}}$個(gè)體作為父代
     (7)  if rand< 交叉概率Crossrate
     (8)   在兩個(gè)子種群父代中隨機(jī)選擇個(gè)體進(jìn)行染色體交叉;
     (9)  end if
     (10) if rand< 突變概率Mutationrate
     (11)   在兩個(gè)子種群的個(gè)體隨機(jī)選擇染色體進(jìn)行突變;
     (12) end if
     (13) 得到兩個(gè)子種群對(duì)應(yīng)的子代種群${\bf{pop}}_i^{\boldsymbol{\varPhi}} $和$ {\bf{pop}}_i^{\boldsymbol{G}} $
     (14) 利用式(17)計(jì)算組合解綜合適應(yīng)度:${\text{Fitnes}}{{\text{s}}_1}({\bf{pop}}_i^{\boldsymbol{\varPhi }};{{\boldsymbol{G}}_{{\text{best}}}})$
     和${\text{Fitnes}}{{\text{s}}_2}({{\boldsymbol{\varPhi}} _{{\text{best}}}};{\bf{pop}}_i^{\boldsymbol{G}})$,并將得到的解按適應(yīng)度降序排序;
     (15) if max(${\text{Fitnes}}{{\text{s}}_1}({\bf{pop}}_i^{\boldsymbol{\varPhi}} ;{{\boldsymbol{G}}_{{\text{best}}}})$)>${\text{Fitness}}({{\boldsymbol{\varPhi}} _{{\text{best}}}},{{\boldsymbol{G}}_{{\text{best}}}})$
     (16)  更新${{\boldsymbol{\varPhi }}_{{\text{best}}}}$;
     (17) end if
     (18) if max(${\text{Fitnes}}{{\text{s}}_2}({{\boldsymbol{\varPhi }}_{{\text{best}}}};{\bf{pop}}_i^{\boldsymbol{G}})$)>${\text{Fitness}}({{\boldsymbol{\varPhi}} _{{\text{best}}}},{{\boldsymbol{G}}_{{\text{best}}}})$
     (19)  更新$ {{\boldsymbol{G}}_{{\text{best}}}} $;
     (20) end if
     (21) 計(jì)算并更新代表解的適應(yīng)度${\text{Fitness}}({{\boldsymbol{\varPhi}} _{{\text{best}}}},{{\boldsymbol{G}}_{{\text{best}}}})$
     (22)end for
     (23)得到$[{{\boldsymbol{\varPhi}} _{{\text{best}}}},{{\boldsymbol{G}}_{{\text{best}}}}]$作為聯(lián)合波束成形優(yōu)化解;
    下載: 導(dǎo)出CSV

    表  1  系統(tǒng)參數(shù)

    參數(shù)符號(hào)參數(shù)值參數(shù)符號(hào)參數(shù)值參數(shù)符號(hào)參數(shù)值參數(shù)符號(hào)參數(shù)值
    ${P_{\max }}$ 30 dBm ${\sigma ^2}$ –114 dBmf2.4 GHz $\rho $ 0.01
    ${\alpha _{{\mathrm{U}} {\text{-}} {\mathrm{R}}}}$ 2.2 ${\alpha _{{\mathrm{U}} {\text{-}} k}}$ 3.5 ${\alpha _{{\mathrm{R}} {\text{-}} k}}$ 2.8K2
    M4 ${L_x}$ 4 ${L_y}$ 4 $\phi $ $0.43\pi $
    ${A_{\min }}$0.2 $\alpha $ 1.6 ${K_1}$ 10 ${K_2}$ 10
    下載: 導(dǎo)出CSV

    表  2  CCEA算法參數(shù)

    參數(shù)名參數(shù)值參數(shù)名參數(shù)值
    種群個(gè)體數(shù)量pop20選擇率 Selectrate0.2
    交叉概率 Crossrate0.6突變率 Mutationrate0.1
    最大迭代次數(shù) inter1 000k10.5
    c160c21.0
    下載: 導(dǎo)出CSV

    表  3  圖3對(duì)應(yīng)的位置參數(shù)及頻譜效率對(duì)比

    UAV和用戶(hù)位置參數(shù) 用戶(hù)1方位
    $[\theta _1^{{\text{azi}}},\theta _1^{{\text{ele}}}]$
    用戶(hù)2方位
    $[\theta _2^{{\text{azi}}},\theta _2^{{\text{ele}}}]$
    初始頻譜效率
    (bit/(s·Hz))
    優(yōu)化后的頻譜效率
    (bit/(s·Hz))
    圖3(a) $ {{\boldsymbol{w}}_{\rm{U}}} = {(25\,{\text{m}},30\,{\text{m}},30\,{\text{m}})^{\mathrm{T}}} $
    $ {{\mathbf{w}}_1} = {(47\,m,15\,m,0\,m)^{\mathrm{T}}} $
    $ {{\boldsymbol{w}}_2} = {(25\,m,5\,m,0\,m)^{\mathrm{T}}} $
    [59.04°, 64.99°] [30.96°, 23.21°] 6.511 7 26.868 9
    圖3(b) $ {{\boldsymbol{w}}_{\rm{U}}} = {(25\,{\text{m}},15\,{\text{m}},30\,{\text{m}})^{\mathrm{T}}} $
    $ {{\mathbf{w}}_1} = {(47\,m,15\,m,0\,m)^{\mathrm{T}}} $
    $ {{\boldsymbol{w}}_2} = {(25\,m,5\,m,0\,m)^{\mathrm{T}}} $
    [59.04°, 64.99°] [30.96°, 23.21°] 3.320 4 28.713 6
    圖3(c) $ {{\mathbf{w}}_{\rm{U}}} = {(25\,{\text{m}},30\,{\text{m}},30\,{\text{m}})^{\mathrm{T}}} $
    $ {{\boldsymbol{w}}_1} = {(30\,m,15\,m,0\,m)^{\mathrm{T}}} $
    $ {{\boldsymbol{w}}_2} = {(5\,m,5\,m,0\,m)^{\mathrm{T}}} $
    [36.67°, 26.36°] [6.30°, 15.47°] 6.234 8 27.642 8
    下載: 導(dǎo)出CSV
  • [1] ZENG Yong, ZHANG Rui, and LIM T J. Wireless communications with unmanned aerial vehicles: Opportunities and challenges[J]. IEEE Communications Magazine, 2016, 54(5): 36–42. doi: 10.1109/MCOM.2016.7470933.
    [2] 朱秋明, 華博宇, 毛開(kāi), 等. 無(wú)人機(jī)毫米波信道建模進(jìn)展和挑戰(zhàn)[J]. 數(shù)據(jù)采集與處理, 2020, 35(6): 1049–1059. doi: 10.16337/j.1004-9037.2020.06.004.

    ZHU Qiuming, HUA Boyu, MAO Kai, et al. Advances and challenges of UAV millimeter-wave channel modeling[J]. Journal of Data Acquisition and Processing, 2020, 35(6): 1049–1059. doi: 10.16337/j.1004-9037.2020.06.004.
    [3] 朱秋明, 倪浩然, 華博宇, 等. 無(wú)人機(jī)毫米波信道測(cè)量與建模研究綜述[J]. 移動(dòng)通信, 2022, 46(12): 2–11. doi: 10.3969/j.issn.1006-1010.20221114-0001.

    ZHU Qiuming, NI Haoran, HUA Boyu, et al. A survey of UAV millimeter-wave channel measurement and modeling[J]. Mobile Communications, 2022, 46(12): 2–11. doi: 10.3969/j.issn.1006-1010.20221114-0001.
    [4] PANG Xiaowei, SHENG Min, ZHAO Nan, et al. When UAV meets IRS: Expanding air-ground networks via passive reflection[J]. IEEE Wireless Communications, 2021, 28(5): 164–170. doi: 10.1109/MWC.010.2000528.
    [5] WU Qingqing and ZHANG Rui. Intelligent reflecting surface enhanced wireless network via joint active and passive beamforming[J]. IEEE Transactions on Wireless Communications, 2019, 18(11): 5394–5409. doi: 10.1109/TWC.2019.2936025.
    [6] MA Dong, DING Ming, and HASSAN M. Enhancing cellular communications for UAVs via intelligent reflective surface[C]. 2020 IEEE Wireless Communications and Networking Conference (WCNC), Seoul, Korea (South), 2020: 1–6. doi: 10.1109/WCNC45663.2020.9120632.
    [7] LIU Xin, YU Yingfeng, PENG Bao, et al. RIS-UAV enabled worst-case downlink secrecy rate maximization for mobile vehicles[J]. IEEE Transactions on Vehicular Technology, 2023, 72(5): 6129–6141. doi: 10.1109/TVT.2022.3231376.
    [8] NA Zhenyu, LIU Yue, SHI Jingcheng, et al. UAV-supported clustered NOMA for 6G-enabled internet of things: Trajectory planning and resource allocation[J]. IEEE Internet of Things Journal, 2021, 8(20): 15041–15048. doi: 10.1109/JIOT.2020.3004432.
    [9] NA Zhenyu, JI Chenglan, LIN Bin, et al. Joint optimization of trajectory and resource allocation in secure UAV relaying communications for internet of things[J]. IEEE Internet of Things Journal, 2022, 9(17): 16284–16296. doi: 10.1109/JIOT.2022.3151105.
    [10] YE Jia, QIAO Jingping, KAMMOUN A, et al. Nonterrestrial communications assisted by reconfigurable intelligent surfaces[J]. Proceedings of the IEEE, 2022, 110(9): 1423–1465. doi: 10.1109/JPROC.2022.3169690.
    [11] HUANG Chongwen, MO Ronghong, and YUEN C. Reconfigurable intelligent surface assisted multiuser MISO systems exploiting deep reinforcement learning[J]. IEEE Journal on Selected Areas in Communications, 2020, 38(8): 1839–1850. doi: 10.1109/JSAC.2020.3000835.
    [12] 萬(wàn)詩(shī)晴, 仲偉志, 何藝, 等. 基于深度強(qiáng)化學(xué)習(xí)的可重構(gòu)智能超表面輔助無(wú)人機(jī)通信聯(lián)合波束成形與軌跡優(yōu)化[J]. 電波科學(xué)學(xué)報(bào), 2024, 39(4): 722–731. doi: 10.12265/j.cjors.2023233.

    WAN Shiqing, ZHONG Weizhi, HE Yi, et al. The optimization of beamforming and trajectory for reconfigurable intelligent surface assisted UAV communication system based on deep reinforcement learning[J]. Chinese Journal of Radio Science, 2024, 39(4): 722–731. doi: 10.12265/j.cjors.2023233.
    [13] DANG Jian, ZHANG Zaichen, LI Yewei, et al. Fast and arbitrary beam pattern design for RIS-assisted terahertz wireless communication[J]. IEEE Transactions on Vehicular Technology, 2023, 72(2): 2620–2625. doi: 10.1109/TVT.2022.3209669.
    [14] RAJAGOPALAN H and RAHMAT-SAMII Y. Loss quantification for microstrip reflectarray: Issue of high fields and currents[C]. 2008 IEEE Antennas and Propagation Society International Symposium, San Diego, USA, 2008: 1–4. doi: 10.1109/APS.2008.4619755.
    [15] ABEYWICKRAMA S, ZHANG Rui, WU Qingqing, et al. Intelligent reflecting surface: Practical phase shift model and beamforming optimization[J]. IEEE Transactions on Communications, 2020, 68(9): 5849–5863. doi: 10.1109/TCOMM.2020.3001125.
    [16] SAREMI S, MIRJALILI S, and LEWIS A. Biogeography-based optimisation with chaos[J]. Neural Computing and Applications, 2014, 25(5): 1077–1097. doi: 10.1007/s00521-014-1597-x.
    [17] 何藝, 仲偉志, 萬(wàn)詩(shī)晴, 等. 智能反射面輔助的MU-MISO車(chē)聯(lián)網(wǎng)毫米波通信聯(lián)合波束賦形[J]. 信號(hào)處理, 2024, 40(2): 336–344. doi: 10.16798/j.issn.1003-0530.2024.02.011.

    HE Yi, ZHONG Weizhi, WAN Shiqing, et al. Joint beamforming for IRS-aided MU-MISO millimeter wave communication of vehicular network[J]. Journal of Signal Processing, 2024, 40(2): 336–344. doi: 10.16798/j.issn.1003-0530.2024.02.011.
  • 加載中
圖(4) / 表(4)
計(jì)量
  • 文章訪問(wèn)數(shù):  462
  • HTML全文瀏覽量:  160
  • PDF下載量:  66
  • 被引次數(shù): 0
出版歷程
  • 收稿日期:  2024-07-04
  • 修回日期:  2024-11-07
  • 網(wǎng)絡(luò)出版日期:  2024-11-13
  • 刊出日期:  2025-02-28

目錄

    /

    返回文章
    返回