一级黄色片免费播放|中国黄色视频播放片|日本三级a|可以直接考播黄片影视免费一级毛片

高級搜索

留言板

尊敬的讀者、作者、審稿人, 關(guān)于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復(fù)。謝謝您的支持!

姓名
郵箱
手機(jī)號碼
標(biāo)題
留言內(nèi)容
驗(yàn)證碼

基于模板對齊與多階段特征學(xué)習(xí)的光場角度重建

郁梅 周濤 陳曄曜 蔣志迪 駱挺 蔣剛毅

郁梅, 周濤, 陳曄曜, 蔣志迪, 駱挺, 蔣剛毅. 基于模板對齊與多階段特征學(xué)習(xí)的光場角度重建[J]. 電子與信息學(xué)報(bào), 2025, 47(2): 530-540. doi: 10.11999/JEIT240481
引用本文: 郁梅, 周濤, 陳曄曜, 蔣志迪, 駱挺, 蔣剛毅. 基于模板對齊與多階段特征學(xué)習(xí)的光場角度重建[J]. 電子與信息學(xué)報(bào), 2025, 47(2): 530-540. doi: 10.11999/JEIT240481
YU Mei, ZHOU Tao, CHEN Yeyao, JIANG Zhidi, LUO Ting, JIANG Gangyi. Light Field Angular Reconstruction Based on Template Alignment and Multi-stage Feature Learning[J]. Journal of Electronics & Information Technology, 2025, 47(2): 530-540. doi: 10.11999/JEIT240481
Citation: YU Mei, ZHOU Tao, CHEN Yeyao, JIANG Zhidi, LUO Ting, JIANG Gangyi. Light Field Angular Reconstruction Based on Template Alignment and Multi-stage Feature Learning[J]. Journal of Electronics & Information Technology, 2025, 47(2): 530-540. doi: 10.11999/JEIT240481

基于模板對齊與多階段特征學(xué)習(xí)的光場角度重建

doi: 10.11999/JEIT240481 cstr: 32379.14.JEIT240481
基金項(xiàng)目: 國家自然科學(xué)基金(62271276, 62071266, 62401301),浙江省自然科學(xué)基金(LQ24F010002)
詳細(xì)信息
    作者簡介:

    郁梅:女,教授,研究方向?yàn)槎嗝襟w信號處理與通信、計(jì)算成像、視覺感知與編碼、圖像視頻質(zhì)量評價(jià)等

    周濤:男,碩士生,研究方向?yàn)楣鈭鰣D像處理、光場角度重建

    陳曄曜:男,講師,研究方向?yàn)楦邉?dòng)態(tài)范圍成像、計(jì)算成像、視頻處理等

    蔣志迪:男,副教授,研究方向?yàn)閿?shù)字視頻壓縮與通信、多視圖視頻編碼和圖像處理

    駱挺:男,教授,研究方向?yàn)樗聢D像增強(qiáng),高動(dòng)態(tài)范圍成像等

    蔣剛毅:男,教授,研究方向?yàn)槎嗝襟w信號處理,圖像處理與視頻壓縮,計(jì)算成像與視覺感知等

    通訊作者:

    蔣剛毅 jianggangyi@126.com

  • 中圖分類號: TN911.73

Light Field Angular Reconstruction Based on Template Alignment and Multi-stage Feature Learning

Funds: The National Natural Science Foundation of China (62271276, 62071266, 62401301), The Natural Science Foundation of Zhejiang Province (LQ24F010002)
  • 摘要: 現(xiàn)有光場圖像角度重建方法通過探索光場圖像內(nèi)在的空間-角度信息以進(jìn)行角度重建,但無法同時(shí)處理不同視點(diǎn)層的子孔徑圖像重建任務(wù),難以滿足光場圖像可伸縮編碼的需求。為此,將視點(diǎn)層視為稀疏模板,該文提出一種能夠單模型處理不同角度稀疏模板的光場圖像角度重建方法。將不同的角度稀疏模板視為微透鏡陣列圖像的不同表示,通過模板對齊將輸入的不同視點(diǎn)層整合為微透鏡陣列圖像,采用多階段特征學(xué)習(xí)方式,以微透鏡陣列級-子孔徑級的特征學(xué)習(xí)策略來處理不同輸入的稀疏模板,并輔以獨(dú)特的訓(xùn)練模式,以穩(wěn)定地參考不同角度稀疏模板,重建任意角度位置的子孔徑圖像。實(shí)驗(yàn)結(jié)果表明,所提方法能有效地參考不同稀疏模板,靈活地重建任意角度位置的子孔徑圖像,且所提模板對齊與訓(xùn)練方法能有效地應(yīng)用于其它光場圖像超分辨率重建方法以提升其處理不同角度稀疏模板的能力。
  • 圖  1  所提 TAF-LFAR 網(wǎng)絡(luò)框架

    圖  2  插值結(jié)果示意圖

    圖  3  子孔徑級特征融合模塊示意圖

    圖  4  特征映射模塊示意圖

    圖  5  目標(biāo)角度位置的子孔徑圖像合成結(jié)構(gòu)圖

    圖  6  不同光場圖像角度重建方法的視覺比較結(jié)果(可視化結(jié)果所處角度位置如(a1)和(b1)右下角網(wǎng)格所示

    圖  7  所提方法針對光場圖像可伸縮編碼的應(yīng)用效果

    表  1  實(shí)驗(yàn)所用訓(xùn)練和測試集劃分

    使用方法 數(shù)據(jù)集 數(shù)據(jù)類型 場景個(gè)數(shù)
    訓(xùn)練 100Scenes[12] 真實(shí)場景 100
    測試 Reflective[21] 真實(shí)場景 15
    Occlusion[21] 真實(shí)場景 25
    30Scenes[12] 真實(shí)場景 30
    下載: 導(dǎo)出CSV

    表  2  不同光場角度超分辨率重建方法在3×3→7×7重建任務(wù)上的定量比較

    方法 30 Scenes Occlusion Reflective
    PSNR(dB) SSIM PSNR(dB) SSIM PSNR(dB) SSIM
    ShearedEPI[13] 42.74 0.986 7 39.84 0.981 9 40.32 0.964 7
    Yeung et al.[8] 44.53 0.990 0 42.06 0.987 0 42.56 0.971 1
    LFASR-geo[14] 44.16 0.988 9 41.71 0.986 6 42.04 0.969 3
    FS-GAF[15] 44.32 0.989 0 41.94 0.987 0 42.62 0.970 6
    DistgASR[11] 45.90 0.996 8 43.88 0.996 0 43.95 0.988 7
    IRVAE[16] 45.64 0.996 7 43.62 0.995 8 42.48 0.988 1
    LFAR-TAF 46.07 0.997 0 44.06 0.996 2 43.95 0.989 5
    下載: 導(dǎo)出CSV

    表  3  所提模板對齊和訓(xùn)練策略在不同角度重建方法上的驗(yàn)證

    方法 重建任務(wù) 30 Scenes Occlusion Reflective
    PSNR(dB) SSIM PSNR(dB) SSIM PSNR(dB) SSIM
    DistgASR[11] 角度
    5→7×7
    44.70 0.995 9 41.84 0.994 2 42.07 0.984 9
    IRVAE[16] 44.62 0.995 9 41.87 0.994 3 41.86 0.985 0
    LFAR-TAF 45.08 0.996 0 42.53 0.994 9 42.24 0.984 1
    DistgASR[11] 角度
    3×3→7×7
    45.81 0.996 7 43.73 0.995 9 43.81 0.988 3
    IRVAE[16] 45.36 0.996 5 43.07 0.995 6 42.90 0.987 4
    LFAR-TAF 46.07 0.997 0 44.06 0.996 2 43.95 0.989 5
    下載: 導(dǎo)出CSV

    表  4  所提方法各核心模塊的消融實(shí)驗(yàn)結(jié)果

    方法30 ScenesOcclusionReflective
    PSNR(dB)SSIMPSNR(dB)SSIMPSNR(dB)SSIM
    w/o MLAIFL45.310.995 843.780.996 043.280.988 3
    w/o SAIF45.880.996 843.780.996 043.880.989 5
    LFAR-TAF46.070.997 044.060.996 243.950.989 5
    下載: 導(dǎo)出CSV
  • [1] CHEN Yeyao, JIANG Gangyi, YU Mei, et al. HDR light field imaging of dynamic scenes: A learning-based method and a benchmark dataset[J]. Pattern Recognition, 2024, 150: 110313. doi: 10.1016/j.patcog.2024.110313.
    [2] ZHAO Chun and JEON B. Compact representation of light field data for refocusing and focal stack reconstruction using depth adaptive multi-CNN[J]. IEEE Transactions on Computational Imaging, 2024, 10: 170–180. doi: 10.1109/TCI.2023.3347910.
    [3] ATTAL B, HUANG Jiabin, ZOLLHOFER M, et al. Learning neural light fields with ray-space embedding[C]. 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), New Orleans, USA, 2022: 19787–19797. doi: 10.1109/CVPR52688.2022.01920.
    [4] HUR J, LEE J Y, CHOI J, et al. I see-through you: A framework for removing foreground occlusion in both sparse and dense light field images[C]. 2023 IEEE/CVF Winter Conference on Applications of Computer Vision (WACV), Waikoloa, USA, 2023: 229–238. doi: 10.1109/WACV56688.2023.00031.
    [5] 鄧慧萍, 曹召洋, 向森, 等. 基于上下文感知跨層特征融合的光場圖像顯著性檢測[J]. 電子與信息學(xué)報(bào), 2023, 45(12): 4489–4498. doi: 10.11999/JEIT221270.

    DENG Huiping, CAO Zhaoyang, XIANG Sen, et al. Saliency detection based on context-aware cross-layer feature fusion for light field images[J]. Journal of Electronics & Information Technology, 2023, 45(12): 4489–4498. doi: 10.11999/JEIT221270.
    [6] 武迎春, 王玉梅, 王安紅, 等. 基于邊緣增強(qiáng)引導(dǎo)濾波的光場全聚焦圖像融合[J]. 電子與信息學(xué)報(bào), 2020, 42(9): 2293–2301. doi: 10.11999/JEIT190723.

    WU Yingchun, WANG Yumei, WANG Anhong, et al. Light field all-in-focus image fusion based on edge enhanced guided filtering[J]. Journal of Electronics & Information Technology, 2020, 42(9): 2293–2301. doi: 10.11999/JEIT190723.
    [7] YOON Y, JEON H G, YOO D, et al. Learning a deep convolutional network for light-field image super-resolution[C]. 2015 IEEE International Conference on Computer Vision Workshop (ICCVW), Santiago, Chile, 2015: 57–65. doi: 10.1109/ICCVW.2015.17.
    [8] YEUNG H W F, HOU Junhui, CHEN Jie, et al. Fast light field reconstruction with deep coarse-to-fine modeling of spatial-angular clues[C]. 2018 European Conference on Computer Vision (ECCV), Munich, Germany, 2018: 138–154. doi: 10.1007/978-3-030-01231-1_9.
    [9] WU Gaochang, ZHAO Mandan, WANG Liangyong, et al. Light field reconstruction using deep convolutional network on EPI[C]. 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, USA, 2017: 1638–1646. doi: 10.1109/CVPR.2017.178.
    [10] WANG Yunlong, LIU Fei, WANG Zilei, et al. End-to-end view synthesis for light field imaging with pseudo 4DCNN[C]. 2018 European Conference on Computer Vision (ECCV), Munich, Germany, 2018, pp. 340–355. doi: 10.1007/978-3-030-01216-8_21.
    [11] WANG Yingqian, WANG Longguang, WU Gaochang, et al. Disentangling light fields for super-resolution and disparity estimation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2023, 45(1): 425–443. doi: 10.1109/TPAMI.2022.3152488.
    [12] KALANTARI N K, WANG Tingchun, and RAMAMOORTHI R. Learning-based view synthesis for light field cameras[J]. ACM Transactions on Graphics, 2016, 35(6): 193. doi: 10.1145/2980179.2980251.
    [13] WU Gaochang, LIU Yebin, DAI Qionghai, et al. Learning sheared EPI structure for light field reconstruction[J]. IEEE Transactions on Image Processing, 2019, 28(7): 3261–3273. doi: 10.1109/TIP.2019.2895463.
    [14] JIN Jing, HOU Junhui, YUAN Hui, et al. Learning light field angular super-resolution via a geometry-aware network[C]. 2020 34th AAAI Conference on Artificial Intelligence, New York, USA, 2020: 11141–11148. doi: 10.1609/aaai.v34i07.6771.
    [15] JIN Jing, HOU Junhui, CHEN Jie, et al. Deep coarse-to-fine dense light field reconstruction with flexible sampling and geometry-aware fusion[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2022, 44(4): 1819–1836. doi: 10.1109/TPAMI.2020.3026039.
    [16] HAN Kang and XIANG Wei. Inference-reconstruction variational autoencoder for light field image reconstruction[J]. IEEE Transactions on Image Processing, 2022, 31: 5629–5644. doi: 10.1109/TIP.2022.3197976.
    [17] ?ETINKAYA E, AMIRPOUR H, and TIMMERER C. LFC-SASR: Light field coding using spatial and angular super-resolution[C]. 2022 IEEE International Conference on Multimedia and Expo Workshops (ICMEW), Taipei City, China, 2022: 1–6. doi: 10.1109/ICMEW56448.2022.9859373.
    [18] AMIRPOUR H, TIMMERER C, and GHANBARI M. SLFC: Scalable light field coding[C]. 2021 Data Compression Conference (DCC), Snowbird, USA, 2021: 43–52. doi: 10.1109/DCC50243.2021.00012.
    [19] ZHANG Yulun, TIAN Yapeng, KONG Yu, et al. Residual dense network for image super-resolution[C] 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Salt Lake City, USA, 2018: 2472–2481. doi: 10.1109/CVPR.2018.00262.
    [20] HAN Dongchen, YE Tianzhu, HAN Yizeng, et al. Agent attention: On the integration of softmax and linear attention[C]. 18th European Conference on Computer Vision, Milan, Italy, 2024: 124–140. doi: 10.1007/978-3-031-72973-7_8.
    [21] RAJ A S, LOWNEY M, SHAH R, et al. Stanford Lytro light field archive[EB/OL]. http://lightfields.stanford.edu/LF2016.html, 2016.
    [22] RERABEK M and EBRAHIMI T. New light field image dataset[C]. 8th International Conference on Quality of Multimedia Experience, Lisbon, Portugal, 2016.
  • 加載中
圖(7) / 表(4)
計(jì)量
  • 文章訪問數(shù):  199
  • HTML全文瀏覽量:  88
  • PDF下載量:  40
  • 被引次數(shù): 0
出版歷程
  • 收稿日期:  2024-06-13
  • 修回日期:  2025-01-23
  • 網(wǎng)絡(luò)出版日期:  2025-02-09
  • 刊出日期:  2025-02-28

目錄

    /

    返回文章
    返回