一级黄色片免费播放|中国黄色视频播放片|日本三级a|可以直接考播黄片影视免费一级毛片

高級搜索

留言板

尊敬的讀者、作者、審稿人, 關于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復。謝謝您的支持!

姓名
郵箱
手機號碼
標題
留言內容
驗證碼

偏差未補償自適應邊緣化容積卡爾曼濾波跟蹤方法

鄧洪高 余潤華 紀元法 吳孫勇 孫少帥

鄧洪高, 余潤華, 紀元法, 吳孫勇, 孫少帥. 偏差未補償自適應邊緣化容積卡爾曼濾波跟蹤方法[J]. 電子與信息學報, 2025, 47(1): 156-166. doi: 10.11999/JEIT240469
引用本文: 鄧洪高, 余潤華, 紀元法, 吳孫勇, 孫少帥. 偏差未補償自適應邊緣化容積卡爾曼濾波跟蹤方法[J]. 電子與信息學報, 2025, 47(1): 156-166. doi: 10.11999/JEIT240469
DENG Honggao, YU Runhua, JI Yuanfa, WU Sunyong, SUN Shaoshuai. An Adaptive Target Tracking Method Utilizing Marginalized Cubature Kalman Filter with Uncompensated Biases[J]. Journal of Electronics & Information Technology, 2025, 47(1): 156-166. doi: 10.11999/JEIT240469
Citation: DENG Honggao, YU Runhua, JI Yuanfa, WU Sunyong, SUN Shaoshuai. An Adaptive Target Tracking Method Utilizing Marginalized Cubature Kalman Filter with Uncompensated Biases[J]. Journal of Electronics & Information Technology, 2025, 47(1): 156-166. doi: 10.11999/JEIT240469

偏差未補償自適應邊緣化容積卡爾曼濾波跟蹤方法

doi: 10.11999/JEIT240469 cstr: 32379.14.JEIT240469
基金項目: 廣西重點研發(fā)項目(AB23026150, AB23026147),國家自然科學基金(U23A20280)
詳細信息
    作者簡介:

    鄧洪高:男,研究員,研究方向為雷達信號處理和衛(wèi)星導航

    余潤華:男,碩士生,研究方向為雷達多目標跟蹤、空間誤差配準和多源信息融合

    紀元法:男,教授,研究方向為衛(wèi)星導航和信號處理

    吳孫勇:男,教授,研究方向為雷達信號處理、多目標檢測與跟蹤和多源信息融合

    孫少帥:女,碩士,研究方向為項目管理

    通訊作者:

    吳孫勇 wusunyong121991@163.com

  • 中圖分類號: V243.2; TN953

An Adaptive Target Tracking Method Utilizing Marginalized Cubature Kalman Filter with Uncompensated Biases

Funds: Guangxi Key Research and Development Project (AB23026150, AB23026147), The National Natural Science Foundation of China (U23A20280)
  • 摘要: 針對存在突變測量偏差和未知時變量測噪聲場景下的目標跟蹤問題,該文提出一種偏差未補償自適應邊緣化容積卡爾曼濾波跟蹤方法。首先通過建立差分量測方程來消除恒定的測量偏差,同時構建滿足beta-Bernoulli分布的指示變量識別突變測量偏差,將相鄰時刻目標狀態(tài)擴維以滿足實時濾波需求,利用逆Wishart分布建模未知量測噪聲協(xié)方差矩陣,從而建立目標狀態(tài)、指示變量、噪聲協(xié)方差矩陣的聯(lián)合分布,并通過變分貝葉斯推斷來求解各個參數(shù)的近似后驗。為減小濾波負擔,對擴維后的狀態(tài)向量進行邊緣化處理,結合容積卡爾曼濾波方法實現(xiàn)邊緣化容積卡爾曼濾波跟蹤。仿真實驗結果表明,所提方法能夠同時處理突變測量偏差和未知時變量測噪聲,從而對目標進行有效跟蹤。
  • 圖  1  跟蹤效果

    圖  2  E[r]值變化圖

    圖  3  不同方法的位置RMSE

    圖  4  不同方法的速度RMSE

    圖  5  不同方法的位置ARMSE

    圖  6  不同方法的速度ARMSE

    圖  7  不同$\varepsilon $值的位置ARMSE

    圖  8  不同$\varepsilon $值的速度ARMSE

    圖  9  邊緣化處理前后的RMSE差值

    圖  10  邊緣化處理前后的ARMSE差值

    1  偏差未補償自適應邊緣化容積卡爾曼濾波跟蹤算法

     輸入:狀態(tài)估計值${{\boldsymbol{\tilde x}}_{0|0}}$,誤差協(xié)方差${{\boldsymbol{P}}_{0|0}}$,逆Wishart分布參數(shù)
     ${u_{0|0}}$, ${{\boldsymbol{U}}_{0|0}}$,貝塔分布參數(shù)${\alpha _0}$, ${\beta _0}$,初始時刻伯努利變量的期望
     值${\text{E}}[{r_0}]$,遺忘因子$ \rho $,迭代次數(shù)N
     輸出:${{\boldsymbol{\tilde x}}_{k|k}}$,${{\boldsymbol{P}}_{k|k}}$, ${u_{k|k}}$, ${{\boldsymbol{U}}_{k|k}}$。
     (1) for k = 1:K
     (2)  通過式(23)計算${{\boldsymbol{\tilde x}}_{k|k - 1}}$, ${{\boldsymbol{P}}_{k|k - 1}}$, $ {{\boldsymbol{C}}_{k|k - 1}} $;
     (3)  計算:$ {u_{k|k - 1}} = \rho {u_{k - 1|k - 1}} $, ${{\boldsymbol{U}}_{k|k - 1}} = \rho {{\boldsymbol{U}}_{k - 1|k - 1}}$;
     (4)  初始化:$ {\boldsymbol{\tilde x}}_{k|k}^{{\text{(0)}}} = {{\boldsymbol{\tilde x}}_{k|k - 1}} $, ${\boldsymbol{P}}_{k|k}^{{\text{(0)}}} = {{\boldsymbol{P}}_{k|k - 1}}$,
        $ u_{k|k}^{(0)} = {u_{k|k - 1}} $, $ {\boldsymbol{U}}_{k|k}^{(0)} = {{\boldsymbol{U}}_{k|k - 1}} $;
     (5)  for i = 0:N
     (6)   通過式(14)計算${{\stackrel \frown{{\boldsymbol{R}}} }}_k^{(i + 1)}$;
     (7)   通過式(35)計算${\boldsymbol{\tilde x}}_{k|k}^{{\text{(}}i{\text{ + 1)}}}$, ${\boldsymbol{P}}_{k|k}^{{\text{(}}i{\text{ + 1)}}}$;
     (8)   通過式(18)計算${({\text{E}}[{r_k}])^{(i + 1)}}$;
     (9)   根據(jù)式(34)判斷傳感器測量偏差是否突變
     (10)    若傳感器測量偏差突變:
     (11)    ${{\boldsymbol{\tilde x}}_{k|k}} = {\boldsymbol{\tilde x}}_{k|k}^{{\text{(}}0{\text{)}}}$, ${{\boldsymbol{P}}_{k|k}} = {\boldsymbol{P}}_{k|k}^{(0)}$;
     (12)    ${u_{k|k}} = u_{k|k}^{(0)}$, ${{\boldsymbol{U}}_{k|k}} = {\boldsymbol{U}}_{k|k}^{(0)}$;
     (13)    跳出循環(huán);
     (14)   若傳感器測量偏差不突變:
     (15)    ${{\boldsymbol{\tilde x}}_{k|k}} = {\boldsymbol{\tilde x}}_{k|k}^{{\text{(}}i{\text{ + 1)}}}$,${{\boldsymbol{P}}_{k|k}} = {\boldsymbol{P}}_{k|k}^{(i + 1)}$;
     (16)    通過式(20)計算$\alpha _k^{(i + 1)}$和$\beta _k^{(i + 1)}$;
     (17)    通過式(22)計算$u_{k|k}^{(i + 1)}$和$ {\boldsymbol{U}}_{k|k}^{(i + 1)} $;
     (18)    ${u_{k|k}} = u_{k|k}^{{\text{(}}i{\text{ + 1)}}}$, $ {{\boldsymbol{U}}_{k|k}} = {\boldsymbol{U}}_{k|k}^{(i + 1)} $;
     (19)   計算迭代停止閾值$\kappa $:
          $\kappa = ||{\boldsymbol{\tilde x}}_{k|k}^{{\text{(}}i + 1{\text{)}}} - {\boldsymbol{\tilde x}}_{k|k}^{{\text{(}}i{\text{)}}}||/||{\boldsymbol{\tilde x}}_{k|k}^{{\text{(}}i{\text{)}}}||$;
     (20)    當$\kappa \le {10^{ - 6}}$時:
     (21)     跳出循環(huán)。
     (22)   end for
     (23) end for
    下載: 導出CSV

    表  1  運行時間對比(s)

    方法時間
    傳統(tǒng)CKF1.038 1
    增量CKF1.210 0
    NRCKF11.343 8
    提出的方法(非邊緣化)12.866 4
    提出的方法(邊緣化)7.333 3
    下載: 導出CSV

    表  2  僅測量偏差${{\boldsymbol}_k}$變化時各方法ARMSE對比

    傳統(tǒng)CKF增量CKFNRCKF提出的邊緣化CKF
    ${\text{ARMS}}{{\text{E}}_{{\text{pos}}}}$(m)155.359 178.411 847.686 815.359 0
    ${\text{ARMS}}{{\text{E}}_{{\text{vel}}}}$(m/s)6.533 43.533 92.062 21.549 0
    下載: 導出CSV

    表  3  僅量測協(xié)方差矩陣${{\boldsymbol{R}}_k}$變化時各方法ARMSE對比

    傳統(tǒng)CKF增量CKFNRCKF提出的邊緣化CKF
    ${\text{ARMS}}{{\text{E}}_{{\text{pos}}}}$(m)49.822 029.690 622.204 59.597 0
    ${\text{ARMS}}{{\text{E}}_{{\text{vel}}}}$(m/s)1.481 21.655 11.696 71.518 7
    下載: 導出CSV
  • [1] LIN X and BAR-SHALOM Y. Multisensor target tracking performance with bias compensation[J]. IEEE Transactions on Aerospace and Electronic Systems, 2006, 42(3): 1139–1149. doi: 10.1109/TAES.2006.248212.
    [2] 董云龍, 張焱. 雷達系統(tǒng)偏差精確配準技術研究綜述[J]. 現(xiàn)代雷達, 2024, 46(3): 1–8. doi: 10.16592/j.cnki.1004-7859.2024.03.001.

    DONG Yunlong and ZHANG Yan. A review of radar system deviation accurate registration technology[J]. Modern Radar, 2024, 46(3): 1–8. doi: 10.16592/j.cnki.1004-7859.2024.03.001.
    [3] 崔亞奇, 熊偉, 何友. 基于MLR的機動平臺傳感器誤差配準算法[J]. 航空學報, 2012, 33(1): 118–128. doi: 11-1929/V.20111213.1132.001.

    CUI Yaqi, XIONG Wei, and HE You. Mobile platform sensor registration algorithm based on MLR[J]. Acta Aeronautica et Astronautica Sinica, 2012, 33(1): 118–128. doi: 11-1929/V.20111213.1132.001.
    [4] XIU Jianjuan, DONG Kai, and HE You. Systematic error real-time registration based on modified input estimation[J]. Journal of Systems Engineering and Electronics, 2016, 27(5): 986–992. doi: 10.21629/JSEE.2016.05.06.
    [5] GENG Han, LIANG Yan, LIU Yurong, et al. Bias estimation for asynchronous multi-rate multi-sensor fusion with unknown inputs[J]. Information Fusion, 2018, 39: 139–153. doi: 10.1016/j.inffus.2017.03.002.
    [6] CHUGHTAI A H, MAJAL A, TAHIR M, et al. Variational-based nonlinear Bayesian filtering with biased observations[J]. IEEE Transactions on Signal Processing, 2022, 70: 5295–5307. doi: 10.1109/TSP.2022.3217921.
    [7] HUANG Yulong, JIA Guangle, CHEN Badong, et al. A new robust Kalman filter with adaptive estimate of time-varying measurement bias[J]. IEEE Signal Processing Letters, 2020, 27: 700–704. doi: 10.1109/LSP.2020.2983552.
    [8] 傅惠民, 吳云章, 婁泰山. 欠觀測條件下的增量Kalman濾波方法[J]. 機械強度, 2012, 34(1): 43–47. doi: 10.16579/j.issn.1001.9669.2012.01.014.

    FU Huimin, WU Yunzhang, and LOU Taishan. Incremental Kalman filter method under poor observation condition[J]. Journal of Mechanical Strength, 2012, 34(1): 43–47. doi: 10.16579/j.issn.1001.9669.2012.01.014.
    [9] 傅惠民, 婁泰山, 吳云章. 欠觀測條件下的擴展增量Kalman濾波方法[J]. 航空動力學報, 2012, 27(4): 777–781. doi: 10.13224/j.cnki.jasp.2012.04.004.

    FU Huimin, LOU Taishan, and WU Yunzhang. Extended incremental Kalman filter method under poor observation condition[J]. Journal of Aerospace Power, 2012, 27(4): 777–781. doi: 10.13224/j.cnki.jasp.2012.04.004.
    [10] 馬麗麗, 趙甜甜, 陳金廣. 欠觀測條件下的增量容積卡爾曼濾波[J]. 計算機工程, 2014, 40(10): 228–231,238. doi: 10.3969/j.issn.1000-3428.2014.10.043.

    MA Lili, ZHAO Tiantian, and CHEN Jinguang. Incremental cubature Kalman filtering under poor observation condition[J]. Computer Engineering, 2014, 40(10): 228–231,238. doi: 10.3969/j.issn.1000-3428.2014.10.043.
    [11] 傅惠民, 吳云章, 婁泰山. 自適應無跡增量濾波方法[J]. 航空動力學報, 2013, 28(2): 259–263. doi: 10.13224/j.cnki.jasp.2013.02.008.

    FU Huimin, WU Yunzhang, and LOU Taishan. Adaptive unscented incremental filter method[J]. Journal of Aerospace Power, 2013, 28(2): 259–263. doi: 10.13224/j.cnki.jasp.2013.02.008.
    [12] 孫小君, 周晗, 閆廣明. 基于新息的自適應增量Kalman濾波器[J]. 電子與信息學報, 2020, 42(9): 2223–2230. doi: 10.11999/JEIT190493.

    SUN Xiaojun, ZHOU Han, and YAN Guangming. Adaptive incremental Kalman filter based on innovation[J]. Journal of Electronics & Information Technology, 2020, 42(9): 2223–2230. doi: 10.11999/JEIT190493.
    [13] LOU Taishan, YANG Ning, WANG Yan, et al. Target tracking based on incremental center differential Kalman filter with uncompensated biases[J]. IEEE Access, 2018, 6: 66285–66292. doi: 10.1109/ACCESS.2018.2879118.
    [14] 黃玉龍, 張勇剛, 武哲民, 等. 帶有色厚尾量測噪聲的魯棒高斯近似濾波器和平滑器[J]. 自動化學報, 2017, 43(1): 114–131. doi: 10.16383/j.aas.2017.c150810.

    HUANG Yulong, ZHANG Yonggang, WU Zhemin, et al. Robust Gaussian approximate filter and smoother with colored heavy tailed measurement noise[J]. Acta Automatica Sinica, 2017, 43(1): 114–131. doi: 10.16383/j.aas.2017.c150810.
    [15] WANG Guoqing, ZHAO Jiaxiang, YANG Chunyu, et al. Robust Kalman filter for systems with colored heavy-tailed process and measurement noises[J]. IEEE Transactions on Circuits and Systems II: Express Briefs, 2023, 70(11): 4256–4260. doi: 10.1109/TCSII.2023.3283547.
    [16] WANG Hongwei, LI Hongbin, FANG Jun, et al. Robust Gaussian Kalman filter with outlier detection[J]. IEEE Signal Processing Letters, 2018, 25(8): 1236–1240. doi: 10.1109/LSP.2018.2851156.
    [17] HOSTETTLER R and S?RKK? S. Rao-blackwellized Gaussian smoothing[J]. IEEE Transactions on Automatic Control, 2019, 64(1): 305–312. doi: 10.1109/TAC.2018.2828087.
    [18] JIA Guangle, HUANG Yulong, ZHANG Yonggang, et al. A novel adaptive Kalman filter with unknown probability of measurement loss[J]. IEEE Signal Processing Letters, 2019, 26(12): 1862–1866. doi: 10.1109/LSP.2019.2951464.
    [19] GRANSTR?M K and ORGUNER U. On the reduction of Gaussian inverse Wishart mixtures[C]. 2012 15th International Conference on Information Fusion, Singapore, 2012: 2162–2169.
    [20] GU Peng, JING Zhongliang, and WU Liangbin. Robust adaptive multi-target tracking with unknown measurement and process noise covariance matrices[J]. IET Radar, Sonar & Navigation, 2022, 16(4): 735–747. doi: 10.1049/rsn2.12216.
    [21] ZHU Jiangbo, XIE Weixin, and LIU Zongxiang. Student’s t-based robust Poisson multi-Bernoulli mixture filter under heavy-tailed process and measurement noises[J]. Remote Sensing, 2023, 15(17): 4232. doi: 10.3390/rs15174232.
  • 加載中
圖(10) / 表(4)
計量
  • 文章訪問數(shù):  244
  • HTML全文瀏覽量:  82
  • PDF下載量:  53
  • 被引次數(shù): 0
出版歷程
  • 收稿日期:  2024-06-11
  • 修回日期:  2024-11-30
  • 網(wǎng)絡出版日期:  2024-12-09
  • 刊出日期:  2025-01-31

目錄

    /

    返回文章
    返回