一级黄色片免费播放|中国黄色视频播放片|日本三级a|可以直接考播黄片影视免费一级毛片

高級(jí)搜索

留言板

尊敬的讀者、作者、審稿人, 關(guān)于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復(fù)。謝謝您的支持!

姓名
郵箱
手機(jī)號(hào)碼
標(biāo)題
留言內(nèi)容
驗(yàn)證碼

自適應(yīng)聚類中心個(gè)數(shù)選擇:一種聯(lián)邦學(xué)習(xí)的隱私效用平衡方法

寧博 寧一鳴 楊超 周新 李冠宇 馬茜

寧博, 寧一鳴, 楊超, 周新, 李冠宇, 馬茜. 自適應(yīng)聚類中心個(gè)數(shù)選擇:一種聯(lián)邦學(xué)習(xí)的隱私效用平衡方法[J]. 電子與信息學(xué)報(bào), 2025, 47(2): 519-529. doi: 10.11999/JEIT240414
引用本文: 寧博, 寧一鳴, 楊超, 周新, 李冠宇, 馬茜. 自適應(yīng)聚類中心個(gè)數(shù)選擇:一種聯(lián)邦學(xué)習(xí)的隱私效用平衡方法[J]. 電子與信息學(xué)報(bào), 2025, 47(2): 519-529. doi: 10.11999/JEIT240414
NING Bo, NING Yi ming, YANG Chao, ZHOU Xin, LI Guan yu, MA Qian. Adaptive Clustering Center Selection: A Privacy Utility Balancing Method for Federated Learning[J]. Journal of Electronics & Information Technology, 2025, 47(2): 519-529. doi: 10.11999/JEIT240414
Citation: NING Bo, NING Yi ming, YANG Chao, ZHOU Xin, LI Guan yu, MA Qian. Adaptive Clustering Center Selection: A Privacy Utility Balancing Method for Federated Learning[J]. Journal of Electronics & Information Technology, 2025, 47(2): 519-529. doi: 10.11999/JEIT240414

自適應(yīng)聚類中心個(gè)數(shù)選擇:一種聯(lián)邦學(xué)習(xí)的隱私效用平衡方法

doi: 10.11999/JEIT240414 cstr: 32379.14.JEIT240414
基金項(xiàng)目: 國家自然科學(xué)基金(61976032, 62002039)
詳細(xì)信息
    作者簡(jiǎn)介:

    寧博:男,博士,教授,研究方向?yàn)閿?shù)據(jù)管理、數(shù)據(jù)挖掘等

    寧一鳴:男,碩士生,研究方向?yàn)椴罘蛛[私、聯(lián)邦學(xué)習(xí)

    楊超:男,博士,高級(jí)工程師,研究方向?yàn)閿?shù)據(jù)挖掘和人工智能

    周新:女,博士,講師,研究方向?yàn)閳D像目標(biāo)檢測(cè)等

    李冠宇:男,博士,教授,研究方向?yàn)橹悄苄畔⑻幚淼?/p>

    馬茜:女,博士,講師,研究方向?yàn)閿?shù)據(jù)分析等

    通訊作者:

    寧博 ningbo@dlmu.edu.cn

  • 中圖分類號(hào): TN919; TP309.2

Adaptive Clustering Center Selection: A Privacy Utility Balancing Method for Federated Learning

Funds: The National Natural Science Foundation of China (61976032, 62002039)
  • 摘要: 聯(lián)邦學(xué)習(xí)是一種分布式機(jī)器學(xué)習(xí)方法,它使多個(gè)設(shè)備或節(jié)點(diǎn)能夠協(xié)作訓(xùn)練模型,同時(shí)保持?jǐn)?shù)據(jù)的本地性。但由于聯(lián)邦學(xué)習(xí)是由不同方擁有的數(shù)據(jù)集進(jìn)行模型訓(xùn)練,敏感數(shù)據(jù)可能會(huì)被泄露。為了改善上述問題,已有相關(guān)工作在聯(lián)邦學(xué)習(xí)中應(yīng)用差分隱私對(duì)梯度數(shù)據(jù)添加噪聲。然而在采用了相應(yīng)的隱私技術(shù)來降低敏感數(shù)據(jù)泄露風(fēng)險(xiǎn)的同時(shí),模型精度和效果因?yàn)樵肼暣笮〉牟煌彩艿搅瞬糠钟绊?。為解決此問題,該文提出一種自適應(yīng)聚類中心個(gè)數(shù)選擇機(jī)制(DP-Fed-Adap),根據(jù)訓(xùn)練輪次和梯度的變化動(dòng)態(tài)地改變聚類中心個(gè)數(shù),使模型可以在保持相同性能水平的同時(shí)確保對(duì)敏感數(shù)據(jù)的保護(hù)。實(shí)驗(yàn)表明,在使用相同的隱私預(yù)算前提下DP-Fed-Adap與添加了差分隱私的聯(lián)邦相似算法(FedSim)和聯(lián)邦平均算法(FedAvg)相比,具有更好的模型性能和隱私保護(hù)效果。
  • 圖  1  算法流程圖

    圖  2  梯度方向的變化趨勢(shì)

    圖  3  固定聚類中心個(gè)數(shù)時(shí)分類準(zhǔn)確率

    圖  4  3種算法的實(shí)驗(yàn)結(jié)果對(duì)比

    1  DP-Fed-Adap算法

     輸入:訓(xùn)練樣本:$ \{ ({x_1},{y_1}),({x_2},{y_2}), \cdots ,({x_i},{y_i})\} $
        學(xué)習(xí)率:$ a $;模型初始參數(shù):$ {{\boldsymbol{\theta}} _{\text{0}}} $
        本地更新迭代數(shù):$ T $;梯度裁剪值:$ {{C}} $
        初始聚類中心個(gè)數(shù):$ K $;服務(wù)器個(gè)數(shù):$ N $
     輸出:迭代后的模型參數(shù):$ {{\boldsymbol{\theta}} _T} $
     (1) 隨機(jī)選擇幾個(gè)客戶端參與模型訓(xùn)練
     (2) 每個(gè)客戶端隨機(jī)初始化模型參數(shù)$ {{\boldsymbol{\theta}} _{\text{0}}} $
     (3) for對(duì)每一輪的迭代t=1, 2,···, $ T $,執(zhí)行如下操作do
     (4)  采集一個(gè)樣本大小為$ m $的集合$ B $:
     (5)  for對(duì)每一個(gè)樣本$ ({x_i},{y_i}) \in B $:
     (6)   求梯度值:$ {{\boldsymbol{g}}_i} \leftarrow \nabla L(F({x_i},{{\boldsymbol{\theta}} _i}),{y_i}) $
     (7)   梯度裁剪:$ {{\boldsymbol{g}}'_i} \leftarrow {{\boldsymbol{g}}_i}/\max (1,{{{{\left\| {{{\boldsymbol{g}}_i}} \right\|}_2}} \mathord{\left/ {\vphantom {{{{\left\| {{g_i}} \right\|}_2}} {\text{C}}}} \right. } {{C}}}) $
     (8)   end
     (9)   敏感值計(jì)算:$ \Delta {f}=2\times {C} $
     (10)   梯度添加噪聲:$ {{\boldsymbol{g}}'_i} \leftarrow {{\boldsymbol{g}}_i} + {\boldsymbol{N}}(0,\sigma _t^2{{{C}}^2}{\boldsymbol{I}}) $
     (11)   for 對(duì)所得到的加噪后的梯度信息:
     (12)    自適應(yīng)聚類中心個(gè)數(shù)選擇方法
     (13)    各個(gè)服務(wù)器梯度信息做聚合操作:
          $ {g'_i} = 1/N \displaystyle\sum\nolimits_{n = 1}^N {{{g}'_{in}}} $
     (14)    更新模型參數(shù):$ {\theta _{{{t}} + {\text{1}}}} = {\theta _{{t}}} - {\text{a}}{g'_i} $
     (15)   end
     (16)end
    下載: 導(dǎo)出CSV

    2  Adaptive algorithm算法

     輸入:樣本集:$ \{ {{\boldsymbol{g}}_1},{{\boldsymbol{g}}_2}, \cdots ,{{\boldsymbol{g}}_m}\} $;初始聚類中心個(gè)數(shù):$ {{K}} $
     本地更新迭代數(shù):$ {T} $
     輸出:簇劃分:$ \{ {{\boldsymbol{B}}_1},{{\boldsymbol{B}}_2}, \cdots ,{{\boldsymbol{B}}_{{K}}}\} $
     (1)for對(duì)每一輪的迭代t=1, 2,···, $ T $,執(zhí)行如下操作do
     (2) for從數(shù)據(jù)集中選擇$ K $個(gè)樣本作為初始聚類中心
       $ \{{\boldsymbol{g}}_{1},{\boldsymbol{g}}_{2},\cdots, {\boldsymbol{g}}_{{K}}\} $
     (3)   $ {B_i} = \varnothing (1 \le i \le K) $
     (4)  for j=1, 2,···, m do
     (5)   計(jì)算$ {{\boldsymbol{g}}_j} $與各個(gè)聚類中心$ {B_j} $的距離:$ d = {\left\| {{{\boldsymbol{g}}_j} - {{\boldsymbol{B}}_j}} \right\|_2} $
     (6)   根據(jù)距離最近的均值向量確定$ {{\boldsymbol{g}}_j} $屬于哪一個(gè)簇
     (7)   將$ {{\boldsymbol{g}}_j} $劃入相應(yīng)的簇中
     (8)  end
     (9)  for i=1, 2,···, $ K $ do
     (10)    計(jì)算新的均值向量:$ {{\boldsymbol{g}}'_i} = \dfrac{1}{{\left\|{{\boldsymbol{B}}_i}\right\|}}\displaystyle\sum {\boldsymbol{g}} $
     (11)   if $ {{\boldsymbol{g}}'_i} \ne {{\boldsymbol{g}}_i} $ then
     (12)    將均值向量更新
     (13)   else
     (14)    保持均值向量不變
     (15)   end
     (16)   $ K = K - \left[\dfrac{{{\text{iter}}}}{K}\right] $
     (17)   until均值向量均未更新
     (18)   end
     (19) end
    下載: 導(dǎo)出CSV

    表  1  聚類中心個(gè)數(shù)隨輪次變化情況

    1~5輪5~10輪10~20輪20~30輪
    Mnist5432
    Fmnist7654
    Cifar-105432
    Imdb5432
    下載: 導(dǎo)出CSV

    表  2  3種模型性能對(duì)比(%)

    數(shù)據(jù)集模型$\varepsilon $ =2.53, Accuracy$\varepsilon $=3.58, Accuracy
    DP-FedAvgDP-FedSimDP-Fed-AdapDP-FedAvgDP-FedSimDP-Fed-Adap
    Mnist
    Mnist
    MLP81.0481.7282.8384.5985.3585.59
    CNN89.7690.4692.8491.3792.0493.87
    Fmnist
    Fmnist
    MLP59.8661.9063.7762.6364.3465.76
    CNN92.8991.6092.0493.3694.5793.06
    Cifar-10CNN65.9566.0867.5667.5468.5168.45
    ImdbLSTM78.4478.6779.1081.2981.4481.74
    下載: 導(dǎo)出CSV
  • [1] 李三希, 曹志剛, 崔志偉, 等. 數(shù)字經(jīng)濟(jì)的博弈論基礎(chǔ)性科學(xué)問題[J]. 中國科學(xué)基金, 2021, 35(5): 782–800. doi: 10.16262/j.cnki.1000-8217.2021.05.021.

    LI Sanxi, CAO Zhigang, CUI Zhiwei, et al. Fundamental scientific problems of game theory for the digital economy[J]. Bulletin of National Natural Science Foundation of China, 2021, 35(5): 782–800. doi: 10.16262/j.cnki.1000-8217.2021.05.021.
    [2] 劉藝璇, 陳紅, 劉宇涵, 等. 聯(lián)邦學(xué)習(xí)中的隱私保護(hù)技術(shù)[J]. 軟件學(xué)報(bào), 2022, 33(3): 1057–1092. doi: 10.13328/j.cnki.jos.006446.

    LIU Yixuan, CHEN Hong, LIU Yuhan, et al. Privacy-preserving techniques in federated learning[J]. Journal of Software, 2022, 33(3): 1057–1092. doi: 10.13328/j.cnki.jos.006446.
    [3] TRAN A T, LUONG T D, KARNJANA J, et al. An efficient approach for privacy preserving decentralized deep learning models based on secure multi-party computation[J]. Neurocomputing, 2021, 422: 245–262. doi: 10.1016/j.neucom.2020.10.014.
    [4] WANG Bolun, YAO Yuanshun, SHAN S, et al. Neural cleanse: Identifying and mitigating backdoor attacks in neural networks[C]. 2019 IEEE Symposium on Security and Privacy, San Francisco, USA, 2019: 707–723. doi: 10.1109/SP.2019.00031.
    [5] YAN Zhigang and LI Dong. Performance analysis for resource constrained decentralized federated learning over wireless networks[J]. IEEE Transactions on Communications, 2024, 72(7): 4084–4100. doi: 10.1109/TCOMM.2024.3362143.
    [6] YAN Zhigang, LI Dong, ZHANG Zhichao, et al. Accuracy–security tradeoff with balanced aggregation and artificial noise for wireless federated learning[J]. IEEE Internet of Things Journal, 2023, 10(20): 18154–18167. doi: 10.1109/JIOT.2023.3277632.
    [7] YAN Zhigang and LI Dong. Decentralized federated learning on the edge: From the perspective of quantization and graphical topology[J]. IEEE Internet of Things Journal, 2024, 11(21): 34172–34186. doi: 10.1109/JIOT.2024.3400512.
    [8] WU Nan, FAROKHI F, SMITH D, et al. The value of collaboration in convex machine learning with differential privacy[C]. 2020 IEEE Symposium on Security and Privacy, San Francisco, USA, 2020: 304–317. doi: 10.1109/SP40000.2020.00025.
    [9] DWORK C. Differential privacy[C]. The 33rd International Colloquium on Automata, Languages and Programming, Venice, Italy, 2006: 1–12. doi: 10.1007/11787006_1.
    [10] 張躍, 朱友文, 周玉倩, 等. (ε, δ)-本地差分隱私模型下的均值估計(jì)機(jī)制[J]. 電子與信息學(xué)報(bào), 2023, 45(3): 765–774. doi: 10.11999/JEIT221047.

    ZHANG Yue, ZHU Youwen, ZHOU Yuqian, et al. Mean estimation mechanisms under (ε, δ)-local differential privacy[J]. Journal of Electronics and Information Science, 2023, 45(3): 765–774. doi: 10.11999/JEIT221047.
    [11] ABADI M, CHU A, GOODFELLOW I J, et al. Deep learning with differential privacy[C]. 2016 ACM SIGSAC Conference on Computer and Communications Security, Vienna, Austria, 2016: 308–318. doi: 10.1145/2976749.2978318.
    [12] 郭鵬, 鐘尚平, 陳開志, 等. 差分隱私GAN梯度裁剪閾值的自適應(yīng)選取方法[J]. 網(wǎng)絡(luò)與信息安全學(xué)報(bào), 2018, 4(5): 10–20. doi: 10.11959/j.issn.2096-109x.2018041.

    GUO Peng, ZHONG Shangping, CHEN Kaizhi, et al. Adaptive selection method of differential privacy GAN gradient clipping thresholds[J]. Journal of Network and Information Security, 2018, 4(5): 10–20. doi: 10.11959/j.issn.2096-109x.2018041.
    [13] YANG Xiaodong, ZHANG Huishuai, CHEN Wei, et al. Normalized/clipped SGD with perturbation for differentially private non-convex optimization[EB/OL]. https://arxiv.org/abs/2206.13033.
    [14] WU Shuhui, YU Mengqing, AHMED M A M, et al. FL-MAC-RDP: Federated learning over multiple access channels with Rényi differential privacy[J]. International Journal of Theoretical Physics, 2021, 60(7): 2668–2682. doi: 10.1007/s10773-021-04867-0.
    [15] MIRONOV I. Rényi differential privacy[C]. 2017 IEEE 30th Computer Security Foundations Symposium, Santa Barbara, USA, 2017: 263–275. doi: 10.1109/CSF.2017.11.
    [16] HAN Andi, MISHRA B, JAWANPURIA P, et al. Differentially private Riemannian optimization[J]. Machine Learning, 2024, 113(3): 1133–1161. doi: 10.1007/s10994-023-06508-5.
    [17] LI Tian, SAHU A K, ZAHEER M, et al. Federated optimization in heterogeneous networks[J]. Proceedings of Machine Learning and Systems, 2020, 2: 429–450.
    [18] LI Xiaoxiao, JIANG Meirui, ZHANG Xiaofei, et al. FedBN: Federated learning on non-IID features via local batch normalization[C]. The 9th International Conference on Learning Representations, Vienna, Austria, 2021: 1–27.
    [19] LEOUN Y, BOTTOU L, BENGIO Y, et al. Gradient-based learning applied to document recognition[J]. Proceedings of the IEEE, 1998, 86(11): 2278–2324. doi: 10.1109/5.726791.
    [20] HAN Xiao, RASUL K, VOLLGRAF R. Fashion-MNIST: A novel image dataset for benchmarking machine learning algorithms[EB/OL]. https://arxiv.org/abs/1708.07747.
    [21] KRIZHEVSKY A, HINTON G. Learning multiple layers of features from tiny images[J]. Handbook of Systemic Autoimmune Diseases, 2009, 1(4).
    [22] MCMAHAN B, MOORE E, RAMAGE D, et al. Communication-efficient learning of deep networks from decentralized data[C]. The 20th International Conference on Artificial Intelligence and Statistics, Fort Lauderdale, USA, 2017: 1273–1282.
    [23] PALIHAWADANA C, WIRATUNGA N, WIJEKOON A, et al. FedSim: Similarity guided model aggregation for Federated Learning[J]. Neurocomputing, 2022, 483: 432–445. doi: 10.1016/j.neucom.2021.08.141.
  • 加載中
圖(4) / 表(4)
計(jì)量
  • 文章訪問數(shù):  249
  • HTML全文瀏覽量:  186
  • PDF下載量:  45
  • 被引次數(shù): 0
出版歷程
  • 收稿日期:  2024-05-25
  • 修回日期:  2025-01-17
  • 網(wǎng)絡(luò)出版日期:  2025-02-15
  • 刊出日期:  2025-02-28

目錄

    /

    返回文章
    返回