一级黄色片免费播放|中国黄色视频播放片|日本三级a|可以直接考播黄片影视免费一级毛片

高級(jí)搜索

留言板

尊敬的讀者、作者、審稿人, 關(guān)于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復(fù)。謝謝您的支持!

姓名
郵箱
手機(jī)號(hào)碼
標(biāo)題
留言內(nèi)容
驗(yàn)證碼

LoRa網(wǎng)絡(luò)中基于深度強(qiáng)化學(xué)習(xí)的信息年齡優(yōu)化

程克非 陳彩蝶 羅佳 陳前斌

程克非, 陳彩蝶, 羅佳, 陳前斌. LoRa網(wǎng)絡(luò)中基于深度強(qiáng)化學(xué)習(xí)的信息年齡優(yōu)化[J]. 電子與信息學(xué)報(bào), 2025, 47(2): 541-550. doi: 10.11999/JEIT240404
引用本文: 程克非, 陳彩蝶, 羅佳, 陳前斌. LoRa網(wǎng)絡(luò)中基于深度強(qiáng)化學(xué)習(xí)的信息年齡優(yōu)化[J]. 電子與信息學(xué)報(bào), 2025, 47(2): 541-550. doi: 10.11999/JEIT240404
CHENG Kefei, CHEN Caidie, LUO Jia, CHEN Qianbin. Optimizing Age of Information in LoRa Networks via Deep Reinforcement Learning[J]. Journal of Electronics & Information Technology, 2025, 47(2): 541-550. doi: 10.11999/JEIT240404
Citation: CHENG Kefei, CHEN Caidie, LUO Jia, CHEN Qianbin. Optimizing Age of Information in LoRa Networks via Deep Reinforcement Learning[J]. Journal of Electronics & Information Technology, 2025, 47(2): 541-550. doi: 10.11999/JEIT240404

LoRa網(wǎng)絡(luò)中基于深度強(qiáng)化學(xué)習(xí)的信息年齡優(yōu)化

doi: 10.11999/JEIT240404 cstr: 32379.14.JEIT240404
基金項(xiàng)目: 重慶市教委科學(xué)技術(shù)研究項(xiàng)目(KJQN202400643)
詳細(xì)信息
    作者簡介:

    程克非:男,博士生導(dǎo)師,研究方向?yàn)闊o線通信網(wǎng)絡(luò)、云計(jì)算與大數(shù)據(jù)、嵌入式系統(tǒng)及應(yīng)用、網(wǎng)絡(luò)空間安全等

    陳彩蝶:女,碩士生,研究方向?yàn)長oRa物聯(lián)網(wǎng)

    羅佳:男,講師,博士,研究方向?yàn)橄乱淮鸁o線通信網(wǎng)絡(luò)、人工智能、區(qū)塊鏈等

    陳前斌:男,教授,博士生導(dǎo)師,研究方向?yàn)閭€(gè)人通信、多媒體信息處理與傳輸、異構(gòu)蜂窩網(wǎng)絡(luò)等

    通訊作者:

    羅佳 s220802003@stu.cqupt.edu.cn

  • 中圖分類號(hào): TN929.5

Optimizing Age of Information in LoRa Networks via Deep Reinforcement Learning

Funds: The Science and Technology Research Program of Chongqing Municipal Education Commission (KJQN202400643)
  • 摘要: 信息年齡(AoI)是信息新鮮度的衡量指標(biāo),針對時(shí)間敏感的物聯(lián)網(wǎng),最小化AoI顯得尤為重要。該文基于LoRa網(wǎng)絡(luò)的智能交通環(huán)境,分析Slot-Aloha協(xié)議下的AoI優(yōu)化策略,建立了Slot-Aloha協(xié)議下數(shù)據(jù)包之間傳輸碰撞和等待時(shí)間的系統(tǒng)模型。通過分析指出,在LoRa上行傳輸過程中,隨著數(shù)據(jù)包數(shù)量增多,AoI主要受到數(shù)據(jù)包碰撞影響。為克服優(yōu)化問題中動(dòng)作空間過大導(dǎo)致難以實(shí)現(xiàn)有效求解的問題,該文采用連續(xù)動(dòng)作空間映射離散動(dòng)作空間的方式,使用柔性動(dòng)作-評價(jià) (SAC)算法對LoRa網(wǎng)絡(luò)下的AoI進(jìn)行優(yōu)化。仿真結(jié)果顯示,SAC算法優(yōu)于傳統(tǒng)算法與傳統(tǒng)深度強(qiáng)化學(xué)習(xí)算法,可有效降低網(wǎng)絡(luò)的平均AoI。
  • 圖  1  系統(tǒng)模型

    圖  2  基于時(shí)隙Aloha的數(shù)據(jù)包AoI變化情況

    圖  3  數(shù)據(jù)包傳輸情況

    圖  4  各終端數(shù)據(jù)包傳輸情況

    圖  5  狀態(tài)轉(zhuǎn)移圖

    圖  6  不同算法的收斂曲線

    圖  7  不同終端數(shù)量下的AoI

    圖  8  TD3算法和SAC算法在不同時(shí)隙長度$ {T}_{\mathrm{s}\mathrm{l}} $下平均AoI變化

    表  1  空中傳輸時(shí)間

    SF789101112
    $ {T}^{\mathrm{a}} $ (ms)73.1128227.6409.6744.71365.3
    下載: 導(dǎo)出CSV

    1  貪婪算法

     輸入:終端集合$ \mathrm{s}\mathrm{e}\mathrm{n}\mathrm{s}\mathrm{o}\mathrm{r}\mathrm{s}=\{{\mathrm{s}\mathrm{e}\mathrm{n}}_{1},{\mathrm{s}\mathrm{e}\mathrm{n}}_{2},\cdots ,{\mathrm{s}\mathrm{e}\mathrm{n}}_{n}\} $
     輸出:每個(gè)終端分配的SF和信道集合
     $ \mathrm{r}\mathrm{e}\mathrm{s}\mathrm{u}\mathrm{l}\mathrm{t}=\{\left({\mathrm{S}\mathrm{F}}_{1},{C}_{1}\right),\left({\mathrm{S}\mathrm{F}}_{2},{C}_{2}\right),\cdots ,({\mathrm{S}\mathrm{F}}_{n},{C}_{n}\left)\right\} $
     (1) $ \mathrm{r}\mathrm{e}\mathrm{s}\mathrm{u}\mathrm{l}\mathrm{t} \leftarrow \mathrm{\varnothing },\mathrm{s}\mathrm{f}\in \left\{\mathrm{7,8},\cdots ,12\right\},\mathrm{信}\mathrm{道}C\in \{\mathrm{0,1},\cdots, c\} $
     (2) $ \bf{f}\bf{o}\bf{r}\;i=\mathrm{1,2},\cdots ,N\;\bfq7j3ldu95\bf{o} $
     (3)  $ {\mathrm{S}\mathrm{F}}_{i}\leftarrow \mathrm{隨}\mathrm{機(jī)}\mathrm{從}{\bf{s}\bf{f}}\mathrm{集}\mathrm{合}\mathrm{中}\mathrm{選}\mathrm{擇} $
     (4)  $ {{C}}_{i}\leftarrow \mathrm{隨}\mathrm{機(jī)}\mathrm{從}C\mathrm{集}\mathrm{合}\mathrm{中}\mathrm{選}\mathrm{擇} $
     (5)  $ \mathrm{r}\mathrm{e}\mathrm{s}\mathrm{u}\mathrm{l}\mathrm{t}\leftarrow \mathrm{r}\mathrm{e}\mathrm{s}\mathrm{u}\mathrm{l}\mathrm{t}\cup ({\mathrm{S}\mathrm{F}}_{i},{C}_{i}) $
     (6) $ \bf{e}\bf{n}\bfq7j3ldu95\;\bf{f}\bf{o}\bf{r} $
     (7) $ \bf{f}\bf{o}\bf{r}\;j=\mathrm{1,2},\cdots ,N\;\bfq7j3ldu95\bf{o} $
     (8)  記錄第$ j $時(shí)隙下最優(yōu)的SF $ {\mathrm\mathrm{e}\mathrm{s}\mathrm{t}{\mathrm{SF}}}_{j}=0 $
     (9)  記錄第$ j $時(shí)隙下最優(yōu)的信道C $ {\mathrm\mathrm{e}\mathrm{s}\mathrm{t}C}_{j}=0 $
     (10)  $ \mathrm{m}\mathrm{i}\mathrm{n}\mathrm{ }\mathrm{ }\mathrm{ }\mathrm{ }\mathrm{ }\mathrm{ }\mathrm{a}\mathrm{v}\mathrm{g}\mathrm{A}\mathrm{o}\mathrm{I}=\mathrm{M}\_\mathrm{I}\mathrm{N}\mathrm{T} $
     (11)  $ \bf{f}\bf{o}\bf{r}\;\mathrm{s}\mathrm{f}\mathrm{ }\leftarrow \mathrm{ }\mathrm{ }\mathrm{ }\mathrm{ }\mathrm{ }\mathrm{ }7\;\mathrm{t}\mathrm{o}\;12\;\bfq7j3ldu95\bf{o} $
     (12)   $ \bf{f}\bf{o}\bf{r}\;C\leftarrow 0\;\mathrm{t}\mathrm{o}\;c\;\bfq7j3ldu95\bf{o} $
     (13)   $ \mathrm{a}\mathrm{v}\mathrm{g}\mathrm{A}\mathrm{o}\mathrm{I}=\mathrm{a}\mathrm{v}\mathrm{e}\mathrm{r}\mathrm{a}\mathrm{g}\mathrm{e}\left(\mathrm{A}\mathrm{o}\mathrm{I}\right) $
     (14)   $ \text{if avgAoI < minavgAoI} $
     (15)    $ \text{minavgAoI=avgAoI} $
     (16)    $ {\mathrm\mathrm{e}\mathrm{s}\mathrm{t}\mathrm{S}\mathrm{F}}_{j}=\mathrm{s}\mathrm{f} $
     (17)    $ {\mathrm\mathrm{e}\mathrm{s}\mathrm{t}C}_{j}=C $
     (18)   $ \bf{end}\;\bf{f}\bf{o}\bf{r} $
     (19)   $ \bf{e}\bf{n}\bfq7j3ldu95\;\bf{f}\bf{o}\bf{r} $
     (20)  $ \mathrm{r}\mathrm{e}\mathrm{s}\mathrm{u}\mathrm{l}\mathrm{t}\leftarrow \mathrm{r}\mathrm{e}\mathrm{s}\mathrm{u}\mathrm{l}\mathrm{t}\cup ({\mathrm\mathrm{e}\mathrm{s}\mathrm{t}\mathrm{S}\mathrm{F}}_{i},{\mathrm\mathrm{e}\mathrm{s}\mathrm{t}C}_{i}) $
     (21)  $ \bf{e}\bf{n}\bfq7j3ldu95\;\bf{f}\bf{o}\bf{r} $
     (22) $ \bf{r}\bf{e}\bf{t}\bf{u}\bf{r}\bf{n}\;\bf{r}\bf{e}\bf{s}\bf{u}\bf{l}\bf{t} $
    下載: 導(dǎo)出CSV

    表  2  實(shí)驗(yàn)參數(shù)值

    參數(shù)名
    信道數(shù)量($ c $) 2
    終端數(shù)量($ N $) 12
    SF數(shù)量 6
    編碼率($ \mathrm{C}\mathrm{R} $) 4/5
    帶寬($ \mathrm{B}\mathrm{W} $) 125 kHz
    數(shù)據(jù)包大小($ {L}_{\mathrmq7j3ldu95} $) 50 Byte
    step總數(shù)($ {T}_{\mathrm{s}\mathrm{t}} $) 500
    時(shí)隙長度($ {T}_{\mathrm{s}\mathrm{l}} $) 500 ms
    下載: 導(dǎo)出CSV
  • [1] KAUL S, YATES R, and GRUTESER M. Real-time status: How often should one update?[C]. IEEE INFOCOM, Orlando, USA, 2012: 2731–2735. doi: 10.1109/INFCOM.2012.6195689.
    [2] INOUE Y, MASUYAMA H, TAKINE T, et al. A general formula for the stationary distribution of the age of information and its application to single-server queues[J]. IEEE Transactions on Information Theory, 2019, 65(12): 8305–8324. doi: 10.1109/TIT.2019.2938171.
    [3] BEDEWY A M, SUN Yin, and SHROFF N B. Minimizing the age of information through queues[J]. IEEE Transactions on Information Theory, 2019, 65(8): 5215–5232. doi: 10.1109/TIT.2019.2912159.
    [4] HE Qing, YUAN Di, and EPHREMIDES A. Optimal link scheduling for age minimization in wireless systems[J]. IEEE Transactions on Information Theory, 2018, 64(7): 5381–5394. doi: 10.1109/TIT.2017.2746751.
    [5] KADOTA I, SINHA A, UYSAL-BIYIKOGLU E, et al. Scheduling policies for minimizing age of information in broadcast wireless networks[J]. IEEE/ACM Transactions on Networking, 2018, 26(6): 2637–2650. doi: 10.1109/TNET.2018.2873606.
    [6] WU Beining, CAI Zhengkun, WU Wei, et al. AoI-aware resource management for smart health via deep reinforcement learning[J]. IEEE Access, 2023, 11: 81180–81195. doi: 10.1109/ACCESS.2023.3299340.
    [7] PENG Kai, XIAO Peiyun, WANG Shangguang, et al. AoI-aware partial computation offloading in IIoT with edge computing: A deep reinforcement learning based approach[J]. IEEE Transactions on Cloud Computing, 2023, 11(4): 3766–3777. doi: 10.1109/TCC.2023.3328614.
    [8] WANG Hao, LIU Chi, YANG Haoming, et al. Ensuring threshold AoI for UAV-assisted mobile crowdsensing by multi-agent deep reinforcement learning with transformer[J]. IEEE/ACM Transactions on Networking, 2024, 32(1): 566–581. doi: 10.1109/TNET.2023.3289172.
    [9] WANG Zhuoyao, XU Xiaokang, and ZHAO Jin. Spreading factor allocation and rate adaption for minimizing age of information in LoRaWAN[C]. 2022 IEEE 24th International Conference on High Performance Computing & Communications; 8th International Conference on Data Science & Systems; 20th International Conference on Smart City; 8th International Conference on Dependability in Sensor, Cloud & Big Data Systems & Application (HPCC/DSS/SmartCity/DependSys), Hainan, China, 2022: 482–489. doi: 10.1109/HPCC-DSS-SmartCity-DependSys57074.2022.00092.
    [10] CUOMO F, CAMPO M, CAPONI A, et al. EXPLoRa: Extending the performance of LoRa by suitable spreading factor allocations[C]. Proceedings of the 13th International Conference on Wireless and Mobile Computing, Networking and Communications, Rome, Italy, 2017: 1–8. doi: 10.1109/WiMOB.2017.8115779.
    [11] GEORGIOU O and RAZA U. Low power wide area network analysis: Can LoRa scale?[J]. IEEE Wireless Communications Letters, 2017, 6(2): 162–165. doi: 10.1109/LWC.2016.2647247.
    [12] HAMDI R, QARAQE M, and ALTHUNIBAT S. Dynamic spreading factor assignment in LoRa wireless networks[C]. 2020 IEEE International Conference on Communications (ICC), Dublin, Ireland, 2020: 1–5. doi: 10.1109/ICC40277.2020.9149243.
    [13] FARHAD A, KIM D H, STHAPIT P, et al. Interference-aware spreading factor assignment scheme for the massive LoRaWAN network[C]. International Conference on Electronics, Information, and Communications, Auckland, New Zealand, 2019: 1–2. doi: 10.23919/ELINFOCOM.2019.8706416.
    [14] FARHAD A, KIM D H, and PYUN J Y. Resource allocation to massive internet of things in LoRaWANs[J]. Sensors, 2020, 20(9): 2645. doi: 10.3390/s20092645.
    [15] BELTRAMELLI L, MAHMOOD A, ?STERBERG P, et al. LoRa beyond aloha: An investigation of alternative random access protocols[J]. IEEE Transactions on Industrial Informatics, 2021, 17(5): 3544–3554. doi: 10.1109/TII.2020.2977046.
    [16] WANG Jiwen, YU Jihong, CHEN Xiaoming, et al. Age of information for frame slotted aloha[J]. IEEE Transactions on Communications, 2023, 71(4): 2121–2135. doi: 10.1109/TCOMM.2023.3244214.
    [17] CHEIKH I, SABIR E, AOUAMI R, et al. Throughput-delay tradeoffs for slotted-aloha-based LoRaWAN networks[C]. International Conference on Wireless Communications and Mobile Computing, Harbin, China, 2021: 2020–2025. doi: 10.1109/IWCMC51323.2021.9498969.
    [18] HAMDI R, BACCOUR E, ERBAD A, et al. LoRa-RL: Deep reinforcement learning for resource management in hybrid energy LoRa wireless networks[J]. IEEE Internet of Things Journal, 2022, 9(9): 6458–6476. doi: 10.1109/JIOT.2021.3110996.
    [19] HONG Shengguang, YAO Fang, ZHANG Fengyun, et al. Reinforcement learning approach for SF allocation in LoRa network[J]. IEEE Internet of Things Journal, 2023, 10(20): 18259–18272. doi: 10.1109/JIOT.2023.3279429.
    [20] WARET A, KANEKO M, GUITTON A, et al. LoRa throughput analysis with imperfect spreading factor orthogonality[J]. IEEE Wireless Communications Letters, 2019, 8(2): 408–411. doi: 10.1109/LWC.2018.2873705.
    [21] HAARNOJA T, ZHOU A, ABBEEL P, et al. Soft actor-critic: Off-policy maximum entropy deep reinforcement learning with a stochastic actor[C]. The 35th International Conference on Machine Learning, Stockholm, Sweden, 2018: 1856–1865.
  • 加載中
圖(8) / 表(3)
計(jì)量
  • 文章訪問數(shù):  393
  • HTML全文瀏覽量:  173
  • PDF下載量:  28
  • 被引次數(shù): 0
出版歷程
  • 收稿日期:  2024-04-04
  • 修回日期:  2025-01-08
  • 網(wǎng)絡(luò)出版日期:  2025-01-25
  • 刊出日期:  2025-02-28

目錄

    /

    返回文章
    返回