一级黄色片免费播放|中国黄色视频播放片|日本三级a|可以直接考播黄片影视免费一级毛片

高級搜索

留言板

尊敬的讀者、作者、審稿人, 關于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復。謝謝您的支持!

姓名
郵箱
手機號碼
標題
留言內容
驗證碼

面對高速移動場景的OTFS系統(tǒng)導頻設計方法

李一兵 湯云鶴 簡鑫 孫騫 陳浩

李一兵, 湯云鶴, 簡鑫, 孫騫, 陳浩. 面對高速移動場景的OTFS系統(tǒng)導頻設計方法[J]. 電子與信息學報, 2025, 47(2): 490-497. doi: 10.11999/JEIT240349
引用本文: 李一兵, 湯云鶴, 簡鑫, 孫騫, 陳浩. 面對高速移動場景的OTFS系統(tǒng)導頻設計方法[J]. 電子與信息學報, 2025, 47(2): 490-497. doi: 10.11999/JEIT240349
LI Yibing, TANG Yunhe, JIAN Xin, SUN Qian, CHEN Hao. Pilot Design Method for OTFS System in High-Speed Mobile Scenarios[J]. Journal of Electronics & Information Technology, 2025, 47(2): 490-497. doi: 10.11999/JEIT240349
Citation: LI Yibing, TANG Yunhe, JIAN Xin, SUN Qian, CHEN Hao. Pilot Design Method for OTFS System in High-Speed Mobile Scenarios[J]. Journal of Electronics & Information Technology, 2025, 47(2): 490-497. doi: 10.11999/JEIT240349

面對高速移動場景的OTFS系統(tǒng)導頻設計方法

doi: 10.11999/JEIT240349 cstr: 32379.14.JEIT240349
基金項目: 國家自然科學基金(52271311),中國船舶集團有限公司第七二二所 2022 年創(chuàng)新基金(2022J-4)
詳細信息
    作者簡介:

    李一兵:男,教授,研究方向為通信信號處理

    湯云鶴:男,碩士生,研究方向為OTFS通信信號處理

    簡鑫:男,碩士生,研究方向為5G通信信號處理

    孫騫:男,副教授,研究方向為通信信號處理

    陳浩:男,高級工程師,研究方向為通信信號處理

    通訊作者:

    孫騫 qsun@hrbeu.edu.cn

  • 中圖分類號: TN929.5

Pilot Design Method for OTFS System in High-Speed Mobile Scenarios

Funds: The National Natural Science Foundation of China General Project (52271311), 2022 Innovation Foundation of China State Shipbuilding Corporation 722 Institute (2022J-4)
  • 摘要: 正交時頻空(Orthogonal Time Frequency Space, OTFS)系統(tǒng)由于在面對高速移動通信場景下的時頻雙色散信道時的優(yōu)異性能受到了廣泛關注。為了準確獲取信道狀態(tài)信息,采用基于壓縮感知的信道估計方法,并輔以特殊的導頻序列完成信道估計。該文針對導頻優(yōu)化問題,提出了一種基于改進遺傳算法的OTFS導頻序列優(yōu)化方法,該方法以互相關最小化為優(yōu)化目標,采用遺傳算法進行尋優(yōu),并能夠自適應調整交叉和變異概率,在較少的迭代次數(shù)下即可實現(xiàn)比傳統(tǒng)偽隨機序列更優(yōu)的互相關性,能夠有效提高信道估計的準確性。此外,考慮到目標函數(shù)的計算量較大,該文分析了互相關的計算過程,并對其中的冗余計算進行了化簡,與直接計算字典集的互相關值相比大大提高了算法的優(yōu)化效率。
  • 圖  1  OTFS系統(tǒng)總體框圖

    圖  4  不同導頻序列的信道估計誤碼率性能

    圖  2  不同智能算法的導頻優(yōu)化收斂性能對比

    圖  3  不同導頻序列的信道估計歸一化均方誤差性能

    表  1  OTFS系統(tǒng)仿真參數(shù)

    參數(shù)
    時延點數(shù)$M$ 16
    多普勒點數(shù)$N$ 16
    中心頻率${f_{\rm{c}}}$ 4×109 Hz
    子載波間隔$\Delta f$ 105 Hz
    最大時延${\tau _{\max }}$ 2 510 ns
    最大移動速度${v_{\max }}$ 1 000 km/h
    字典集過采樣因子$\lambda $ 10
    下載: 導出CSV
  • [1] HADANI R, RAKIB S, TSATSANIS M, et al. Orthogonal time frequency space modulation[C]. IEEE Wireless Communications & Networking Conference, San Francisco, USA, 2017: 1–6. doi: 10.1109/WCNC.2017.7925924.
    [2] QIAN Mi, JI Fei, GE Yao, et al. Block-wise index modulation and receiver design for high-mobility OTFS communications[J]. IEEE Transactions on Communications, 2023, 71(10): 5726–5739. doi: 10.1109/TCOMM.2023.3288568.
    [3] WANG Xuehan, SHI Xu, WANG Jintao, et al. On the Doppler squint effect in OTFS systems over doubly-dispersive channels: Modeling and evaluation[J]. IEEE Transactions on Wireless Communications, 2023, 22(12): 8781–8796. doi: 10.1109/TWC.2023.3265989.
    [4] SHEN Wenqian, DAI Linglong, AN Jianping, et al. Channel estimation for orthogonal time frequency space (OTFS) massive MIMO[J]. IEEE Transactions on Signal Processing, 2019, 67(16): 4204–4217. doi: 10.1109/TSP.2019.2919411.
    [5] WEN Haifeng, YUAN Weijie, YUEN C, et al. MF-OAMP-based joint channel estimation and data detection for OTFS systems[J]. IEEE Transactions on Vehicular Technology, 2024, 73(2): 2948–2953. doi: 10.1109/TVT.2023.3319562.
    [6] RAVITEJA P, PHAN K T, and HONG Yi. Embedded pilot-aided channel estimation for OTFS in delay-Doppler channels[J]. IEEE Transactions on Vehicular Technology, 2019, 68(5): 4906–4917. doi: 10.1109/TVT.2019.2906357.
    [7] LIU Tianjun, FAN Pingzhi, LI Jiangdong, et al. Sequence design for optimized ambiguity function and PAPR under arbitrary spectrum hole constraint[C]. 2017 Eighth International Workshop on Signal Design and Its Applications in Communications (IWSDA), Sapporo, Japan, 2017: 173–177. doi: 10.1109/IWSDA.2017.8097080.
    [8] ZHANG Hongyang, HUANG Xiaojing, and ZHANG J A. Low-overhead OTFS transmission with frequency or time domain channel estimation[J]. IEEE Transactions on Vehicular Technology, 2024, 73(1): 799–811. doi: 10.1109/TVT.2023.3305921.
    [9] WANG Siqiang, GUO Jing, WANG Xinyi, et al. Pilot design and optimization for OTFS modulation[J]. IEEE Wireless Communications Letters, 2021, 10(8): 1742–1746. doi: 10.1109/LWC.2021.3078527.
    [10] OUCHIKH R, CHONAVEL T, A?SSA-EL-BEY A, et al. Joint channel estimation and data detection for high rate orthogonal time frequency space systems[J]. International Journal of Communication Systems, 2023, 36(16): e5579. doi: 10.1002/dac.5579.
    [11] ZHANG Yi, VENKATESAN R, DOBRE O A, et al. Novel compressed sensing-based channel estimation algorithm and near-optimal pilot placement scheme[J]. IEEE Transactions on Wireless Communications, 2016, 15(4): 2590–2603. doi: 10.1109/TWC.2015.2505315.
    [12] DONOHO D L. Compressed sensing[J]. IEEE Transactions on Information Theory, 2006, 52(4): 1289–1306. doi: 10.1109/TIT.2006.871582.
    [13] CHEN Jianqiao, ZHANG Xi, and ZHANG Ping. Bayesian learning for BPSO-based pilot pattern design over sparse OFDM channels[C]. IEEE International Conference on Communications (ICC), Dublin, Ireland, 2020: 1–6. doi: 10.1109/ICC40277.2020.9148704.
    [14] SRINIVAS M and PATNAIK L M. Adaptive probabilities of crossover and mutation in genetic algorithms[J]. IEEE Transactions on Systems, Man, and Cybernetics, 1994, 24(4): 656–667. doi: 10.1109/21.286385.
    [15] YUAN Pu. Low PAPR pilot for delay-Doppler domain modulation[C]. 2022 IEEE/CIC International Conference on Communications in China (ICCC Workshops), Foshan, China, 2022: 466–471. doi: 10.1109/ICCCWorkshops55477.2022.9896687.
    [16] HASHIM F A and HUSSIEN A G. Snake Optimizer: A novel meta-heuristic optimization algorithm[J]. Knowledge-Based Systems, 2022, 242: 108320. doi: 10.1016/j.knosys.2022.108320.
    [17] CAI Jun, HE Xueyun, and SONG Rongfang. Pilot optimization for structured compressive sensing based channel estimation in large-scale MIMO systems with superimposed pilot pattern[J]. Wireless Personal Communications: An International Journal, 2018, 100(3): 977–993. doi: 10.1007/s11277-018-5361-x.
    [18] KIM Y J, SULTAN Q, and CHO Y S. Pilot-based sequence design to overcome a blockage in mmWave cellular systems[C]. 2020 International Conference on Information and Communication Technology Convergence (ICTC), Jeju, Korea (South), 2020: 42–44. doi: 10.1109/ICTC49870.2020.9289488.
    [19] FRANK R, ZADOFF S, and HEIMILLER R. Phase shift pulse codes with good periodic correlation properties (Corresp.)[J]. IRE Transactions on Information Theory, 1962, 8(6): 381–382. doi: 10.1109/TIT.1962.1057786.
    [20] HU Weiwen, LI C P, and CHEN J C. Peak power reduction for pilot-aided OFDM systems with semi-blind detection[J]. IEEE Communications Letters, 2012, 16(7): 1056–1059. doi: 10.1109/LCOMM.2012.050412.120482.
  • 加載中
圖(4) / 表(1)
計量
  • 文章訪問數(shù):  302
  • HTML全文瀏覽量:  117
  • PDF下載量:  49
  • 被引次數(shù): 0
出版歷程
  • 收稿日期:  2024-05-07
  • 修回日期:  2025-01-24
  • 網(wǎng)絡出版日期:  2025-02-09
  • 刊出日期:  2025-02-28

目錄

    /

    返回文章
    返回