一级黄色片免费播放|中国黄色视频播放片|日本三级a|可以直接考播黄片影视免费一级毛片

高級(jí)搜索

留言板

尊敬的讀者、作者、審稿人, 關(guān)于本刊的投稿、審稿、編輯和出版的任何問(wèn)題, 您可以本頁(yè)添加留言。我們將盡快給您答復(fù)。謝謝您的支持!

姓名
郵箱
手機(jī)號(hào)碼
標(biāo)題
留言內(nèi)容
驗(yàn)證碼

基于互質(zhì)陣列冗余分析的稀疏陣列設(shè)計(jì)方法

張宇樂(lè) 周豪 胡國(guó)平 師俊朋 鄭桂妹 宋玉偉

張宇樂(lè), 周豪, 胡國(guó)平, 師俊朋, 鄭桂妹, 宋玉偉. 基于互質(zhì)陣列冗余分析的稀疏陣列設(shè)計(jì)方法[J]. 電子與信息學(xué)報(bào), 2025, 47(1): 178-187. doi: 10.11999/JEIT240348
引用本文: 張宇樂(lè), 周豪, 胡國(guó)平, 師俊朋, 鄭桂妹, 宋玉偉. 基于互質(zhì)陣列冗余分析的稀疏陣列設(shè)計(jì)方法[J]. 電子與信息學(xué)報(bào), 2025, 47(1): 178-187. doi: 10.11999/JEIT240348
ZHANG Yule, ZHOU Hao, HU Guoping, SHI Junpeng, ZHENG Guimei, SONG Yuwei. Sparse Array Design Methods via Redundancy Analysis of Coprime Array[J]. Journal of Electronics & Information Technology, 2025, 47(1): 178-187. doi: 10.11999/JEIT240348
Citation: ZHANG Yule, ZHOU Hao, HU Guoping, SHI Junpeng, ZHENG Guimei, SONG Yuwei. Sparse Array Design Methods via Redundancy Analysis of Coprime Array[J]. Journal of Electronics & Information Technology, 2025, 47(1): 178-187. doi: 10.11999/JEIT240348

基于互質(zhì)陣列冗余分析的稀疏陣列設(shè)計(jì)方法

doi: 10.11999/JEIT240348 cstr: 32379.14.JEIT240348
基金項(xiàng)目: 國(guó)家自然科學(xué)基金(62071476),中國(guó)博士后科學(xué)基金(2022M723879)
詳細(xì)信息
    作者簡(jiǎn)介:

    張宇樂(lè):男,博士生,研究方向?yàn)殛嚵行盘?hào)處理、稀疏陣列、MIMO雷達(dá)

    周豪:男,博士,副教授,研究方向?yàn)榈涂漳繕?biāo)探測(cè)技術(shù)

    胡國(guó)平:男,博士,教授,博士生導(dǎo)師,研究方向?yàn)槔走_(dá)信號(hào)處理、雷達(dá)反隱身技術(shù)、無(wú)線通信技術(shù)和圖像處理

    師俊朋:男,博士,教授,博士生導(dǎo)師,研究方向?yàn)殛嚵行盘?hào)處理、稀疏陣列MIMO雷達(dá)、張量信號(hào)處理

    鄭桂妹:男,博士,副教授,博士生導(dǎo)師,研究方向?yàn)殡姶攀噶總鞲衅麝嚵行盘?hào)處理

    宋玉偉:女,博士,講師,研究方向?yàn)镸IMO雷達(dá)、電磁矢量傳感器陣列雷達(dá)DOA估計(jì)

    通訊作者:

    周豪 17792611529@126.com

  • 中圖分類號(hào): TN911.7

Sparse Array Design Methods via Redundancy Analysis of Coprime Array

Funds: The National Natural Science Foundation of China (62071476), China Postdoctoral Science Foundation (2022M723879)
  • 摘要: 互質(zhì)陣列因具有較低的互耦效應(yīng)而備受關(guān)注,但交替部署的子陣卻在一定程度上限制了連續(xù)自由度的提升。針對(duì)上述問(wèn)題,該文在分析子陣互差集中冗余虛擬陣元產(chǎn)生條件的基礎(chǔ)上,提出了兩種子陣移位互質(zhì)陣列(Coprime Array with Translated Subarray, CATrS),以改善自由度性能。首先,將子陣平移至適當(dāng)位置以優(yōu)化布陣結(jié)構(gòu),并分析了子陣的平移距離。隨后,推導(dǎo)了CATrS結(jié)構(gòu)的自由度、連續(xù)自由度、孔洞位置和虛擬陣元權(quán)重的閉合表達(dá)式。理論分析表明,CATrS結(jié)構(gòu)能夠在保持物理陣元數(shù)量不變的條件下,有效增加自由度和連續(xù)自由度,并抑制陣元互耦。最后,利用仿真實(shí)驗(yàn)驗(yàn)證了CATrS結(jié)構(gòu)在波達(dá)方向估計(jì)中的優(yōu)越性。
  • 圖  1  互質(zhì)陣列示意圖

    圖  2  CATrS-Ⅰ結(jié)構(gòu)示意圖

    圖  3  CATrS-Ⅱ結(jié)構(gòu)示意圖

    圖  4  不同互質(zhì)陣列的連續(xù)自由度、自由度和耦合泄漏量隨陣元數(shù)量變化對(duì)比

    圖  5  不同互質(zhì)陣列的互耦矩陣元素映射圖

    圖  6  不同互質(zhì)陣列估計(jì)11個(gè)目標(biāo)的空間譜

    圖  7  不同互質(zhì)陣列DOA估計(jì)的RMSE對(duì)比

    表  1  不同互質(zhì)陣列的最佳布陣方式、最大連續(xù)自由度和最大自由度

    陣列名稱物理陣元數(shù)量最優(yōu)$M$和$N$最大連續(xù)自由度最大自由度
    CA$T$為偶數(shù)$M = {T \mathord{\left/ {\vphantom {T 2}} \right. } 2},N = {{\left( {T + 2} \right)} \mathord{\left/ {\vphantom {{\left( {T + 2} \right)} 2}} \right. } 2}$$2T + 1$${{{T^2}} \mathord{\left/ {\vphantom {{{T^2}} 4}} \right. } 4} + {{6T} \mathord{\left/ {\vphantom {{6T} 4}} \right. } 4} - 1$
    $T$為奇數(shù)且${{\left( {T + 1} \right)} \mathord{\left/ {\vphantom {{\left( {T + 1} \right)} 2}} \right. } 2}$為偶數(shù)$M = {{\left( {T - 1} \right)} \mathord{\left/ {\vphantom {{\left( {T - 1} \right)} 2}} \right. } 2},N = {{\left( {T + 3} \right)} \mathord{\left/ {\vphantom {{\left( {T + 3} \right)} 2}} \right. } 2}$$2T + 1$${{{T^2}} \mathord{\left/ {\vphantom {{{T^2}} 4}} \right. } 4} + {{6T} \mathord{\left/ {\vphantom {{6T} 4}} \right. } 4} - {7 \mathord{\left/ {\vphantom {7 4}} \right. } 4}$
    $T$為奇數(shù)且${{\left( {T + 1} \right)} \mathord{\left/ {\vphantom {{\left( {T + 1} \right)} 2}} \right. } 2}$為奇數(shù)$M = {{\left( {T - 3} \right)} \mathord{\left/ {\vphantom {{\left( {T - 3} \right)} 2}} \right. } 2},N = {{\left( {T + 5} \right)} \mathord{\left/ {\vphantom {{\left( {T + 5} \right)} 2}} \right. } 2}$$2T + 1$${{{T^2}} \mathord{\left/ {\vphantom {{{T^2}} 4}} \right. } 4} + {{6T} \mathord{\left/ {\vphantom {{6T} 4}} \right. } 4} - {{19} \mathord{\left/ {\vphantom {{19} 4}} \right. } 4}$
    RSRCA-Ⅰ$T$為偶數(shù)$M = {T \mathord{\left/ {\vphantom {T 2}} \right. } 2},N = {{\left( {T + 2} \right)} \mathord{\left/ {\vphantom {{\left( {T + 2} \right)} 2}} \right. } 2}$$3T + 1$${{{T^2}} \mathord{\left/ {\vphantom {{{T^2}} 4}} \right. } 4} + {{5T} \mathord{\left/ {\vphantom {{5T} 2}} \right. } 2} - 3$
    $T$為奇數(shù)且${{\left( {T + 1} \right)} \mathord{\left/ {\vphantom {{\left( {T + 1} \right)} 2}} \right. } 2}$為偶數(shù)$M = {{\left( {T - 1} \right)} \mathord{\left/ {\vphantom {{\left( {T - 1} \right)} 2}} \right. } 2},N = {{\left( {T + 3} \right)} \mathord{\left/ {\vphantom {{\left( {T + 3} \right)} 2}} \right. } 2}$$3T$${{{T^2}} \mathord{\left/ {\vphantom {{{T^2}} 4}} \right. } 4} + {{5T} \mathord{\left/ {\vphantom {{5T} 2}} \right. } 2} - {{19} \mathord{\left/ {\vphantom {{19} 4}} \right. } 4}$
    $T$為奇數(shù)且${{\left( {T + 1} \right)} \mathord{\left/ {\vphantom {{\left( {T + 1} \right)} 2}} \right. } 2}$為奇數(shù)$M = {{\left( {T - 3} \right)} \mathord{\left/ {\vphantom {{\left( {T - 3} \right)} 2}} \right. } 2},N = {{\left( {T + 5} \right)} \mathord{\left/ {\vphantom {{\left( {T + 5} \right)} 2}} \right. } 2}$$3T - 2$${{{T^2}} \mathord{\left/ {\vphantom {{{T^2}} 4}} \right. } 4} + {{5T} \mathord{\left/ {\vphantom {{5T} 2}} \right. } 2} - {{39} \mathord{\left/ {\vphantom {{39} 4}} \right. } 4}$
    RSRCA-Ⅱ$T$為偶數(shù)$M = {T \mathord{\left/ {\vphantom {T 2}} \right. } 2},N = {{\left( {T + 2} \right)} \mathord{\left/ {\vphantom {{\left( {T + 2} \right)} 2}} \right. } 2}$$3T + 3$${{{T^2}} \mathord{\left/ {\vphantom {{{T^2}} 4}} \right. } 4} + {{5T} \mathord{\left/ {\vphantom {{5T} 2}} \right. } 2} - 1$
    $T$為奇數(shù)且${{\left( {T + 1} \right)} \mathord{\left/ {\vphantom {{\left( {T + 1} \right)} 2}} \right. } 2}$為偶數(shù)$M = {{\left( {T - 1} \right)} \mathord{\left/ {\vphantom {{\left( {T - 1} \right)} 2}} \right. } 2},N = {{\left( {T + 3} \right)} \mathord{\left/ {\vphantom {{\left( {T + 3} \right)} 2}} \right. } 2}$$3T + 4$${{{T^2}} \mathord{\left/ {\vphantom {{{T^2}} 4}} \right. } 4} + {{5T} \mathord{\left/ {\vphantom {{5T} 2}} \right. } 2} - {3 \mathord{\left/ {\vphantom {3 4}} \right. } 4}$
    $T$為奇數(shù)且${{\left( {T + 1} \right)} \mathord{\left/ {\vphantom {{\left( {T + 1} \right)} 2}} \right. } 2}$為奇數(shù)$M = {{\left( {T - 3} \right)} \mathord{\left/ {\vphantom {{\left( {T - 3} \right)} 2}} \right. } 2},N = {{\left( {T + 5} \right)} \mathord{\left/ {\vphantom {{\left( {T + 5} \right)} 2}} \right. } 2}$$3T + 6$${{{T^2}} \mathord{\left/ {\vphantom {{{T^2}} 4}} \right. } 4} + {{5T} \mathord{\left/ {\vphantom {{5T} 2}} \right. } 2} - {7 \mathord{\left/ {\vphantom {7 4}} \right. } 4}$
    CATrS-Ⅰ$T$為偶數(shù)$M = {T \mathord{\left/ {\vphantom {T 2}} \right. } 2},N = {{\left( {T + 2} \right)} \mathord{\left/ {\vphantom {{\left( {T + 2} \right)} 2}} \right. } 2}$${{{T^2}} \mathord{\left/ {\vphantom {{{T^2}} 4}} \right. } 4} + 2T$${{{T^2}} \mathord{\left/ {\vphantom {{{T^2}} 2}} \right. } 2} + T - 1$
    $T$為奇數(shù)且${{\left( {T + 1} \right)} \mathord{\left/ {\vphantom {{\left( {T + 1} \right)} 2}} \right. } 2}$為偶數(shù)$M = {{\left( {T - 1} \right)} \mathord{\left/ {\vphantom {{\left( {T - 1} \right)} 2}} \right. } 2},N = {{\left( {T + 3} \right)} \mathord{\left/ {\vphantom {{\left( {T + 3} \right)} 2}} \right. } 2}$${{{T^2}} \mathord{\left/ {\vphantom {{{T^2}} 4}} \right. } 4} + 2T - {5 \mathord{\left/ {\vphantom {5 4}} \right. } 4}$${{{T^2}} \mathord{\left/ {\vphantom {{{T^2}} 2}} \right. } 2} + T - {5 \mathord{\left/ {\vphantom {5 2}} \right. } 2}$
    $T$為奇數(shù)且${{\left( {T + 1} \right)} \mathord{\left/ {\vphantom {{\left( {T + 1} \right)} 2}} \right. } 2}$為奇數(shù)$M = {{\left( {T - 3} \right)} \mathord{\left/ {\vphantom {{\left( {T - 3} \right)} 2}} \right. } 2},N = {{\left( {T + 5} \right)} \mathord{\left/ {\vphantom {{\left( {T + 5} \right)} 2}} \right. } 2}$${{{T^2}} \mathord{\left/ {\vphantom {{{T^2}} 4}} \right. } 4} + 2T - {{21} \mathord{\left/ {\vphantom {{21} 4}} \right. } 4}$${{{T^2}} \mathord{\left/ {\vphantom {{{T^2}} 2}} \right. } 2} + T - {{17} \mathord{\left/ {\vphantom {{17} 2}} \right. } 2}$
    CATrS-Ⅱ$T$為偶數(shù)$M = {T \mathord{\left/ {\vphantom {T 2}} \right. } 2},N = {{\left( {T + 2} \right)} \mathord{\left/ {\vphantom {{\left( {T + 2} \right)} 2}} \right. } 2}$${{{T^2}} \mathord{\left/ {\vphantom {{{T^2}} 4}} \right. } 4} + 2T + 1$${{{T^2}} \mathord{\left/ {\vphantom {{{T^2}} 2}} \right. } 2} + T - 1$
    $T$為奇數(shù)且${{\left( {T + 1} \right)} \mathord{\left/ {\vphantom {{\left( {T + 1} \right)} 2}} \right. } 2}$為偶數(shù)$M = {{\left( {T - 1} \right)} \mathord{\left/ {\vphantom {{\left( {T - 1} \right)} 2}} \right. } 2},N = {{\left( {T + 3} \right)} \mathord{\left/ {\vphantom {{\left( {T + 3} \right)} 2}} \right. } 2}$${{{T^2}} \mathord{\left/ {\vphantom {{{T^2}} 4}} \right. } 4} + 2T + {3 \mathord{\left/ {\vphantom {3 4}} \right. } 4}$${{{T^2}} \mathord{\left/ {\vphantom {{{T^2}} 2}} \right. } 2} + T - {5 \mathord{\left/ {\vphantom {5 2}} \right. } 2}$
    $T$為奇數(shù)且${{\left( {T + 1} \right)} \mathord{\left/ {\vphantom {{\left( {T + 1} \right)} 2}} \right. } 2}$為奇數(shù)$M = {{\left( {T - 3} \right)} \mathord{\left/ {\vphantom {{\left( {T - 3} \right)} 2}} \right. } 2},N = {{\left( {T + 5} \right)} \mathord{\left/ {\vphantom {{\left( {T + 5} \right)} 2}} \right. } 2}$${{{T^2}} \mathord{\left/ {\vphantom {{{T^2}} 4}} \right. } 4} + 2T - {5 \mathord{\left/ {\vphantom {5 4}} \right. } 4}$${{{T^2}} \mathord{\left/ {\vphantom {{{T^2}} 2}} \right. } 2} + T - {{17} \mathord{\left/ {\vphantom {{17} 2}} \right. } 2}$
    下載: 導(dǎo)出CSV

    表  2  不同互質(zhì)陣列的前3個(gè)權(quán)重的表達(dá)式

    權(quán)重 CA ACA RSRCA-Ⅰ RSRCA-Ⅱ CATrS-Ⅰ CATrS-Ⅱ
    $ \omega \left( 1 \right) $ 2 2 2 2 1 1
    $ \omega \left( 2 \right) $ $ \left\{ {\begin{array}{lllllllllll} {N - 1,}&{M = 2} \\ {2,}&{M \ge 3} \end{array}} \right. $ $ \left\{ {\begin{array}{*{20}{l}} {N,}&{M = 2} \\ {5,}&{M = 3,N = 2} \\ {2,}&{M \ge 3} \end{array}} \right. $ $ \left\{ {\begin{array}{*{20}{l}} {N - 2,}&{M = 2} \\ {2,}&{M \ge 3} \end{array}} \right. $ $ \left\{ {\begin{array}{*{20}{l}} {N - 2,}&{M = 2} \\ {2,}&{M \ge 3} \end{array}} \right. $ $ \left\{ {\begin{array}{*{20}{l}} {N - 1,}&{M = 2} \\ {1,}&{M \ge 3} \end{array}} \right. $ $ \left\{ {\begin{array}{*{20}{l}} {N - 1,}&{M = 2} \\ {1,}&{M \ge 3} \end{array}} \right. $
    $ \omega \left( 3 \right) $ $\left\{ \begin{array}{ll}N-1, & M=3 \\ 2, & 其它 \end{array} \right.$ $ \{\begin{array}{ll}N, & M=2 \\ 2M-1, & N=3 \\ 2, & 其它 \end{array} $ $\left\{ \begin{array}{ll}N-2, & M=3 \\ 0, & M=2,N=3 \\ 2, & 其它 \end{array} \right.$ $ \left\{ \begin{array}{ll}N-2, & M=3 \\ 0, & M=2,N=3 \\ 2, & 其它 \end{array}\right. $ $ \left\{ \begin{array}{ll}N-1, & M=3 \\ 1, & 其它 \end{array} \right.$ $ \left\{ \begin{array}{ll}N-1, & M=3 \\ 1, & 其它 \end{array} \right.$
    下載: 導(dǎo)出CSV

    表  3  不同互質(zhì)陣列的陣元位置、連續(xù)自由度、自由度、前3個(gè)權(quán)重和耦合泄漏量

    陣列名稱 陣元位置 連續(xù)自由度 自由度 $ \omega \left( 1 \right) $ $ \omega \left( 2 \right) $ $ \omega \left( 3 \right) $ 耦合泄漏量
    CA {0,5,6,10,12,15,18,20,24,25} 21 39 2 2 2 0.2392
    ACA {0,3,5,6,9,10,12,15,20,25} 35 43 2 2 5 0.2496
    RSRCA-Ⅰ {–5,5,6,10,12,15,18,20,24,25} 31 47 2 2 2 0.2371
    RSRCA-Ⅱ {–6,5,6,10,12,15,18,20,24,25} 33 49 2 2 2 0.2369
    CATrS-Ⅰ {0,6,12,17,18,22,24,27,32,37} 45 59 1 1 1 0.1824
    CATrS-Ⅱ {0,5,10,15,16,20,22,25,28,34} 41 55 1 1 2 0.1878
    下載: 導(dǎo)出CSV
  • [1] 鞏朋成, 王兆彬, 譚海明, 等. 雜波背景下基于交替方向乘子法的低截獲頻控陣MIMO雷達(dá)收發(fā)聯(lián)合優(yōu)化方法[J]. 電子與信息學(xué)報(bào), 2021, 43(5): 1267–1274. doi: 10.11999/JEIT200445.

    GONG Pengcheng, WANG Zhaobin, TAN Haiming, et al. Joint design of the transmit and receive beamforming via alternating direction method of multipliers for LPI of frequency diverse array MIMO radar in the presence of clutter[J]. Journal of Electronics & Information Technology, 2021, 43(5): 1267–1274. doi: 10.11999/JEIT200445.
    [2] SHI Junpeng, YANG Zai, and LIU Yongxiang. On parameter identifiability of diversity-smoothing-based MIMO radar[J]. IEEE Transactions on Aerospace and Electronic Systems, 2022, 58(3): 1660–1675. doi: 10.1109/TAES.2021.3126370.
    [3] GONG Pengcheng, SHAO Zhenhai, TU Guangpeng, et al. Transmit beampattern design based on convex optimization for MIMO radar systems[J]. Signal Processing, 2014, 94: 195–201. doi: 10.1016/j.sigpro.2013.06.021.
    [4] MOFFET A. Minimum-redundancy linear arrays[J]. IEEE Transactions on Antennas and Propagation, 1968, 16(2): 172–175. doi: 10.1109/TAP.1968.1139138.
    [5] PAL P and VAIDYANATHAN P P. Nested arrays: A novel approach to array processing with enhanced degrees of freedom[J]. IEEE Transactions on Signal Processing, 2010, 58(8): 4167–4181. doi: 10.1109/TSP.2010.2049264.
    [6] VAIDYANATHAN P P and PAL P. Sparse sensing with co-prime samplers and arrays[J]. IEEE Transactions on Signal Processing, 2011, 59(2): 573–586. doi: 10.1109/TSP.2010.2089682.
    [7] SHI Junpeng, HU Guoping, ZHANG Xiaofei, et al. Generalized nested array: Optimization for degrees of freedom and mutual coupling[J]. IEEE Communications Letters, 2018, 22(6): 1208–1211. doi: 10.1109/LCOMM.2018.2821672.
    [8] SHAALAN A M A, DU Jun, and TU Yanhui. Dilated nested arrays with more degrees of freedom (DOFs) and less mutual coupling—part I: The fundamental geometry[J]. IEEE Transactions on Signal Processing, 2022, 70: 2518–2531. doi: 10.1109/TSP.2022.3174451.
    [9] ZHAO Pinjiao, WU Qisong, CHEN Zhengyu, et al. Generalized nested array configuration family for direction-of-arrival estimation[J]. IEEE Transactions on Vehicular Technology, 2023, 72(8): 10380–10392. doi: 10.1109/TVT.2023.3260196.
    [10] PAL P and VAIDYANATHAN P P. Coprime sampling and the MUSIC algorithm[C]. 2011 Digital Signal Processing and Signal Processing Education Meeting (DSP/SPE), Sedona, USA, 2011: 289–294. doi: 10.1109/DSP-SPE.2011.5739227.
    [11] QIN Si, ZHANG Y D, and AMIN M G. Generalized coprime array configurations for direction-of-arrival estimation[J]. IEEE Transactions on Signal Processing, 2015, 63(6): 1377–1390. doi: 10.1109/TSP.2015.2393838.
    [12] WANG Xiaomeng and WANG Xin. Hole identification and filling in k-times extended co-prime arrays for highly efficient DOA estimation[J]. IEEE Transactions on Signal Processing, 2019, 67(10): 2693–2706. doi: 10.1109/TSP.2019.2899292.
    [13] SHI Junpeng, WEN Fangqing, LIU Yongxiang, et al. Enhanced and generalized coprime array for direction of arrival estimation[J]. IEEE Transactions on Aerospace and Electronic Systems, 2023, 59(2): 1327–1339. doi: 10.1109/TAES.2022.3200929.
    [14] 劉可, 朱澤政, 于軍, 等. 基于互質(zhì)陣列孔洞分析的稀疏陣列設(shè)計(jì)方法[J]. 電子與信息學(xué)報(bào), 2022, 44(1): 372–379. doi: 10.11999/JEIT201024.

    LIU Ke, ZHU Zezheng, YU Jun, et al. Sparse array design methods based on hole analysis of the coprime array[J]. Journal of Electronics & Information Technology, 2022, 44(1): 372–379. doi: 10.11999/JEIT201024.
    [15] RAZA A, LIU Wei, and SHEN Qing. Thinned coprime array for second-order difference co-array generation with reduced mutual coupling[J]. IEEE Transactions on Signal Processing, 2019, 67(8): 2052–2065. doi: 10.1109/TSP.2019.2901380.
    [16] ZHOU Chengwei, GU Yujie, FAN Xing, et al. Direction-of-arrival estimation for coprime array via virtual array interpolation[J]. IEEE Transactions on Signal Processing, 2018, 66(22): 5956–5971. doi: 10.1109/TSP.2018.2872012.
    [17] FAN Qing, LIU Yu, YANG Tao, et al. Fast and accurate spectrum estimation via virtual coarray interpolation based on truncated nuclear norm regularization[J]. IEEE Signal Processing Letters, 2022, 29: 169–173. doi: 10.1109/LSP.2021.3130018.
    [18] WANG Xinghua, CHEN Zhenhong, REN Shiwei, et al. DOA estimation based on the difference and sum coarray for coprime arrays[J]. Digital Signal Processing, 2017, 69: 22–31. doi: 10.1016/j.dsp.2017.06.013.
    [19] ZHANG Yule, Shi Junpeng, ZHOU Hao, et al. Improved moving scheme for coprime arrays in direction of arrival estimation[J]. Digital Signal Processing, 2024, 149: 104514. doi: 10.1016/j.dsp.2024.104514.
    [20] LIU Chunlin and VAIDYANATHAN P P. Robustness of difference coarrays of sparse arrays to sensor failures—part I: A theory motivated by coarray MUSIC[J]. IEEE Transactions on Signal Processing, 2019, 67(12): 3213–3226. doi: 10.1109/TSP.2019.2912882.
    [21] AHMED A, ZHANG Y D, and ZHANG Jiankang. Coprime array design with minimum lag redundancy[C]. 2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Brighton, UK, 2019: 4125–4129. doi: 10.1109/ICASSP.2019.8683315.
  • 加載中
圖(7) / 表(3)
計(jì)量
  • 文章訪問(wèn)數(shù):  240
  • HTML全文瀏覽量:  150
  • PDF下載量:  33
  • 被引次數(shù): 0
出版歷程
  • 收稿日期:  2024-05-07
  • 修回日期:  2024-12-09
  • 網(wǎng)絡(luò)出版日期:  2024-12-12
  • 刊出日期:  2025-01-31

目錄

    /

    返回文章
    返回