一级黄色片免费播放|中国黄色视频播放片|日本三级a|可以直接考播黄片影视免费一级毛片

高級(jí)搜索

留言板

尊敬的讀者、作者、審稿人, 關(guān)于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁(yè)添加留言。我們將盡快給您答復(fù)。謝謝您的支持!

姓名
郵箱
手機(jī)號(hào)碼
標(biāo)題
留言內(nèi)容
驗(yàn)證碼

基于低秩正則聯(lián)合稀疏建模的圖像去噪算法

查志遠(yuǎn) 袁鑫 張嘉超 朱策

查志遠(yuǎn), 袁鑫, 張嘉超, 朱策. 基于低秩正則聯(lián)合稀疏建模的圖像去噪算法[J]. 電子與信息學(xué)報(bào), 2025, 47(2): 561-572. doi: 10.11999/JEIT240324
引用本文: 查志遠(yuǎn), 袁鑫, 張嘉超, 朱策. 基于低秩正則聯(lián)合稀疏建模的圖像去噪算法[J]. 電子與信息學(xué)報(bào), 2025, 47(2): 561-572. doi: 10.11999/JEIT240324
ZHA Zhiyuan, YUAN Xin, ZHANG Jiachao, ZHU Ce. Low-Rank Regularized Joint Sparsity Modeling for Image Denoising[J]. Journal of Electronics & Information Technology, 2025, 47(2): 561-572. doi: 10.11999/JEIT240324
Citation: ZHA Zhiyuan, YUAN Xin, ZHANG Jiachao, ZHU Ce. Low-Rank Regularized Joint Sparsity Modeling for Image Denoising[J]. Journal of Electronics & Information Technology, 2025, 47(2): 561-572. doi: 10.11999/JEIT240324

基于低秩正則聯(lián)合稀疏建模的圖像去噪算法

doi: 10.11999/JEIT240324 cstr: 32379.14.JEIT240324
基金項(xiàng)目: 國(guó)家自然科學(xué)基金(62471199, 62020106011, 62271414, 61971476, 62002160和62072238),吉林大學(xué)唐敖慶英才教授啟動(dòng)基金,浙江省杰出青年基金(LR23F010001)和西湖基金會(huì)(2023GD007)
詳細(xì)信息
    作者簡(jiǎn)介:

    查志遠(yuǎn):男,教授,研究方向?yàn)閳D像復(fù)原、計(jì)算成像、機(jī)器學(xué)習(xí)

    袁鑫:男,研究員,研究方向?yàn)橛?jì)算成像

    張嘉超:女,助理教授,研究方向?yàn)閳D像復(fù)原

    朱策:男,教授,研究方向?yàn)橐曨l編碼

    通訊作者:

    查志遠(yuǎn) zhiyuan_zha@jlu.edu.cn

  • 中圖分類號(hào): TN911.73

Low-Rank Regularized Joint Sparsity Modeling for Image Denoising

Funds: The National Natural Science Foundation of China (62471199, 62020106011, 62271414, 61971476, 62002160 and 62072238), The Start-up Grant from the Tang Aoqing talent professor of Jilin University, The Science Fund for Distinguished Young Scholars of Zhejiang Province (LR23F010001), The Westlake Foundation (2023GD007)
  • 摘要: 非局部稀疏表示模型,如聯(lián)合稀疏(JS)模型、低秩(LR)模型和組稀疏表示(GSR)模型,通過有效利用圖像的非局部自相似(NSS)屬性,在圖像去噪研究中展現(xiàn)出巨大的潛力。流行的基于字典的JS算法在其目標(biāo)函數(shù)中利用松馳的凸懲罰,避免了NP-hard稀疏編碼,但只能得到近似的稀疏表示。這種近似的JS模型未能對(duì)潛在的圖像數(shù)據(jù)施加低秩性,從而導(dǎo)致圖像去噪質(zhì)量降低。該文提出一種新穎的低秩正則聯(lián)合稀疏(LRJS)模型,用于求解圖像去噪問題。提出的LRJS模型同時(shí)利用非局部相似塊的LR和JS先驗(yàn)信息,可以增強(qiáng)非局部相似塊之間的相關(guān)性(即低秩性),從而可以更好地抑制噪聲,提升去噪圖像的質(zhì)量。為了提高優(yōu)化過程的可處理性和魯棒性,該文設(shè)計(jì)了一種具有自適應(yīng)參數(shù)調(diào)整策略的交替最小化算法來求解目標(biāo)函數(shù)。在兩個(gè)圖像去噪問題(包括高斯噪聲去除和泊松噪聲去除)上的實(shí)驗(yàn)結(jié)果表明,提出的LRJS方法在客觀度量和視覺感知上均優(yōu)于許多現(xiàn)有的流行或先進(jìn)的圖像去噪算法,特別是在處理具有高度自相似性的圖像數(shù)據(jù)時(shí)表現(xiàn)更為出色。提出的LRJS圖像去噪算法的源代碼通過以下鏈接下載:https://pan.baidu.com/s/14bt6u94NBTZXxhWjBHxn6A?pwd=1234,提取碼:1234。
  • 圖  1  稀疏系數(shù)對(duì)比示意圖

    圖  2  比較提出的LRJS方法和幾種先進(jìn)的方法的圖像去噪結(jié)果

    圖  3  實(shí)驗(yàn)中的一些測(cè)試圖像

    圖  4  圖像House在噪聲標(biāo)準(zhǔn)差為100時(shí),不同方法的去噪視覺比對(duì)結(jié)果

    圖  5  圖像Urban25在噪聲標(biāo)準(zhǔn)差為50時(shí),不同方法的去噪視覺比對(duì)結(jié)果

    圖  6  圖像Barbara伴隨著像素強(qiáng)度峰值$ P = 5 $的泊松噪聲的不同方法的去噪視覺比對(duì)結(jié)果

    圖  7  真實(shí)圖像去噪場(chǎng)景1

    圖  8  真實(shí)圖像去噪場(chǎng)景2

    1  基于LRJS的高斯噪聲去除算法

     輸入:噪聲圖像$ {\boldsymbol{y}} $。
     初始化:$ {\sigma _n} $, $ {\hat {\boldsymbol{x}}^0} = {\boldsymbol{y}} $, $ {{\boldsymbol{y}}^0} = {\boldsymbol{y }}$。
     For $ k = 1 $ do
     迭代正則調(diào)整: $ {\boldsymbol{{y}}^k} = {\hat {\boldsymbol{x}}^{(k - 1)}} + \gamma ({\boldsymbol{y}} - {\hat {\boldsymbol{x}}^{(k - 1)}}) $。
     更新噪聲標(biāo)準(zhǔn)差$ {\sigma _e} $通過式(26)。
      For 噪聲圖像$ {\boldsymbol{y}} $中每個(gè)塊$ {y_i} $ do
       收集相似塊生成一個(gè)組$ {{\boldsymbol{Y}}_i} $。
       使用PCA從組$ {{\boldsymbol{Y}}_i} $中學(xué)習(xí)一個(gè)字典$ {{\boldsymbol{D}}_i} $。
       獲得組稀疏$ {{\boldsymbol{A}}_i} $通過計(jì)算$ {{\boldsymbol{A}}_i} = {\boldsymbol{D}}_i^{\mathrm{T}}{{\boldsymbol{Y}}_i} $。
       對(duì)組稀疏$ {{\boldsymbol{A}}_i} $執(zhí)行SVD:$ [{{\boldsymbol{U}}_i},{\Delta _i},{{\boldsymbol{V}}_i}] = {\text{SVD}}({{\boldsymbol{A}}_i}) $。
       更新參數(shù)$ \mu $通過計(jì)算式(25)。
       更新參數(shù)$ \tau $通過計(jì)算式(28)。
       估計(jì)LR矩陣$ {\hat {\boldsymbol{L}}_i} $通過計(jì)算式(9)。
       更新參數(shù)$ \eta $通過計(jì)算式(25)。
       更新參數(shù)$ \lambda $通過計(jì)算式(28)。
       估計(jì)組稀疏系數(shù)$ {\hat {\boldsymbol{A}}_i} $通過計(jì)算式(5)。
      End for
       估計(jì)噪聲圖像$ \hat {\boldsymbol{x}} $通過計(jì)算式(13)。
      End for
     輸出:最終的去噪圖像$ \hat {\boldsymbol{x}} $。
    下載: 導(dǎo)出CSV

    2  基于LRJS的泊松噪聲去除算法

     輸入:噪聲圖像${\boldsymbol{ y}} $。
     初始化:估計(jì)$ {\sigma _n} $通過計(jì)算式(27),$ {\hat {\boldsymbol{x}}^0} = {\boldsymbol{y}} $,$ {{\boldsymbol{y}}^0} = {\boldsymbol{y}} $。
     For $ k = 1 $ do
     迭代正則調(diào)整: $ {{\boldsymbol{y}}^k} = {\hat {\boldsymbol{x}}^{(k - 1)}} + \gamma ({\boldsymbol{y}} - {\hat {\boldsymbol{x}}^{(k - 1)}}) $。
     更新噪聲標(biāo)準(zhǔn)差$ {\sigma _e} $通過式(26)。
      For 噪聲圖像$ {\boldsymbol{y}} $中每個(gè)塊$ {y_i} $ do
       收集相似塊生成一個(gè)組$ {{\boldsymbol{Y}}_i} $。
       使用PCA從組$ {{\boldsymbol{Y}}_i} $中學(xué)習(xí)一個(gè)字典$ {{\boldsymbol{D}}_i} $。
       獲得組稀疏$ {{\boldsymbol{A}}_i} $通過計(jì)算$ {{\boldsymbol{A}}_i} = {\boldsymbol{D}}_i^{\mathrm{T}}{{\boldsymbol{Y}}_i} $。
       對(duì)組稀疏$ {{\boldsymbol{A}}_i} $執(zhí)行SVD:$ [{{\boldsymbol{U}}_i},{\Delta _i},{{\boldsymbol{V}}_i}] = {\text{SVD}}({{\boldsymbol{A}}_i}) $。
       更新參數(shù)$ \mu $通過計(jì)算式(25)。
       更新參數(shù)$ \tau $通過計(jì)算式(28)。
       估計(jì)LR矩陣$ {\hat {\boldsymbol{L}}_i} $通過計(jì)算式(9)。
       更新參數(shù)$ \eta $通過計(jì)算式(25)。
       更新參數(shù)$ \lambda $通過計(jì)算式(28)。
       估計(jì)組稀疏系數(shù)$ {\hat {\boldsymbol{A}}_i} $通過計(jì)算式(5)。
      End for
      調(diào)用ADMM算法:
      初始化:$ {\boldsymbol{g }}= {{\textit{0}}} $,${\boldsymbol{ z}} = {\hat {\boldsymbol{x}}^{(k)}} $。
      更新$ \hat {\boldsymbol{z}} $通過計(jì)算式(21)。
      更新$ \hat {\boldsymbol{x}} $通過計(jì)算式(24)。
      更新$ \hat {\boldsymbol{g}} $通過計(jì)算式(20)。
      End for
     輸出:最終的去噪圖像$ \hat {\boldsymbol{x}} $。
    下載: 導(dǎo)出CSV

    表  1  不同方法用于高斯噪聲去除的平均PSNR比較結(jié)果(dB)

    $ {\sigma _{\boldsymbol{n}}} $ BM3D LSSC EPLL NCSR GID PGPD aGMM OGLR NLNCDR LRJS
    20 31.20 31.36 30.72 31.26 30.25 31.30 31.04 31.05 30.44 31.56
    40 27.53 27.77 27.16 27.66 26.65 27.79 27.37 27.69 27.04 28.02
    75 24.66 24.56 24.01 24.47 23.20 24.71 24.17 24.41 24.02 24.90
    100 23.30 23.09 22.66 23.00 21.56 23.36 22.81 22.69 22.72 23.62
    下載: 導(dǎo)出CSV

    表  2  不同方法測(cè)試Urban100數(shù)據(jù)集用于高斯噪聲去除的平均PSNR比較結(jié)果(dB)

    $ {\sigma _{\boldsymbol{n}}} $ BM3D NCSR PGPD OGLR Dn-CNN IRCNN FFDNet LRJS
    10 33.39 33.66 33.40 32.94 33.83 33.65 33.42 34.25
    20 29.50 29.68 29.47 29.27 29.75 29.64 29.61 30.16
    30 27.33 27.39 27.19 27.18 27.44 27.40 27.49 27.85
    40 25.44 25.77 25.70 25.67 25.86 25.90 26.03 26.28
    50 24.55 24.59 24.59 24.51 24.77 24.75 24.93 25.07
    平均 28.04 28.22 28.07 27.91 28.33 28.27 28.30 28.72
    下載: 導(dǎo)出CSV

    表  3  不同方法用于泊松噪聲去除的平均PSNR比較結(jié)果(dB)

    $ P $TNRDDn-CNNIRCNNLRPDLRSLRJS
    519.5022.3122.7821.6622.2323.56
    1023.5823.2224.6723.6324.6125.44
    1524.1125.4725.8124.2925.9326.54
    2024.4025.9526.5425.3926.8327.44
    下載: 導(dǎo)出CSV

    表  4  消融學(xué)習(xí):JS和提出的LRJS模型在Set12數(shù)據(jù)集上用于圖像去噪的平均PSNR結(jié)果(dB)

    高斯噪聲去除 泊松噪聲去除
    $ {\sigma _{\boldsymbol{n}}} $ 10 20 30 40 50 75 100 平均 $ P $ 1 5 10 15 20 25 30 平均
    JS 34.30 31.02 29.06 27.78 26.74 24.96 23.68 28.22 JS 19.37 23.65 25.10 26.29 27.01 27.58 27.93 25.28
    LRJS 34.54 31.14 29.21 27.87 26.80 24.98 23.73 28.32 LRJS 20.07 23.86 25.40 26.41 27.14 27.69 28.09 25.52
    下載: 導(dǎo)出CSV
  • [1] OSHER S, BURGER M, GOLDFARB D, et al. An iterative regularization method for total variation-based image restoration[J]. Multiscale Modeling & Simulation, 2005, 4(2): 460–489. doi: 10.1137/040605412.
    [2] AHARON M, ELAD M, and BRUCKSTEIN A. K-SVD: An algorithm for designing overcomplete dictionaries for sparse representation[J]. IEEE Transactions on Signal Processing, 2006, 54(11): 4311–4322. doi: 10.1109/TSP.2006.881199.
    [3] BUADES A, COLL B, and MOREL J M. A non-local algorithm for image denoising[C]. IEEE Conference on Computer Vision and Pattern Recognition, San Diego, USA, 2005: 60–65. doi: 10.1109/CVPR.2005.38.
    [4] ELAD M, KAWAR B, and VAKSMAN G. Image denoising: The deep learning revolution and beyond—a survey paper[J]. SIAM Journal on Imaging Sciences, 2023, 16(3): 1594–1654. doi: 10.1137/23M1545859.
    [5] 趙冬冬, 葉逸飛, 陳朋, 等. 基于殘差和注意力網(wǎng)絡(luò)的聲吶圖像去噪方法[J]. 光電工程, 2023, 50(6): 230017. doi: 10.12086/oee.2023.230017.

    ZHAO Dongdong, YE Yifei, CHEN Peng, et al. Sonar image denoising method based on residual and attention network[J]. Opto-Electronic Engineering, 2023, 50(6): 230017. doi: 10.12086/oee.2023.230017.
    [6] 周建新, 周鳳祺. 基于改進(jìn)協(xié)同量子粒子群的小波去噪分析研究[J]. 電光與控制, 2022, 29(1): 47–50. doi: 10.3969/j.issn.1671-637x.2022.01.010.

    ZHOU Jianxin and ZHOU Fengqi. Wavelet denoising analysis based on cooperative quantum-behaved particle swarm optimization[J]. Electronics Optics & Control, 2022, 29(1): 47–50. doi: 10.3969/j.issn.1671-637x.2022.01.010.
    [7] DABOV K, FOI A, KATKOVNIK V, et al. Image denoising by sparse 3-D transform-domain collaborative filtering[J]. IEEE Transactions on Image Processing, 2007, 16(8): 2080–2095. doi: 10.1109/TIP.2007.901238.
    [8] 羅亮, 馮象初, 張選德, 等. 基于非局部雙邊隨機(jī)投影低秩逼近圖像去噪算法[J]. 電子與信息學(xué)報(bào), 2013, 35(1): 99–105. doi: 10.3724/SP.J.1146.2012.00819.

    LUO Liang, FENG Xiangchu, ZHANG Xuande, et al. An image denoising method based on non-local two-side random projection and low rank approximation[J]. Journal of Electronics & Information Technology, 2013, 35(1): 99–105. doi: 10.3724/SP.J.1146.2012.00819.
    [9] ZHANG Jian, ZHAO Debin, and GAO Wen. Group-based sparse representation for image restoration[J]. IEEE Transactions on Image Processing, 2014, 23(8): 3336–3351. doi: 10.1109/TIP.2014.2323127.
    [10] XU Jun, ZHANG Lei, ZUO Wangmeng, et al. Patch group based nonlocal self-similarity prior learning for image denoising[C]. IEEE International Conference on Computer Vision, Santiago, Chile, 2015: 244–252. doi: 10.1109/ICCV.2015.36.
    [11] ZHA Zhiyuan, YUAN Xin, WEN Bihan, et al. A benchmark for sparse coding: When group sparsity meets rank minimization[J]. IEEE Transactions on Image Processing, 2020, 29: 5094–5109. doi: 10.1109/TIP.2020.2972109.
    [12] MAIRAL J, BACH F, PONCE J, et al. Non-local sparse models for image restoration[C]. 12th IEEE International Conference on Computer Vision, Kyoto, Japan, 2009: 2272–2279. doi: 10.1109/ICCV.2009.5459452.
    [13] ZHANG Chengfang, ZHANG Ziyou, FENG Ziliang, et al. Joint sparse model with coupled dictionary for medical image fusion[J]. Biomedical Signal Processing and Control, 2023, 79: 104030. doi: 10.1016/j.bspc.2022.104030.
    [14] LI Chunzhi and CHEN Xiaohua. A staged approach with structural sparsity for hyperspectral unmixing[J]. IEEE Sensors Journal, 2023, 23(12): 13248–13260. doi: 10.1109/JSEN.2023.3270885.
    [15] ZHA Zhiyuan, WEN Bihan, YUAN Xin, et al. Low-rank regularized joint sparsity for image denoising[C]. IEEE International Conference on Image Processing, Anchorage, USA, 2021: 1644–1648. doi: 10.1109/ICIP42928.2021.9506726.
    [16] ZHANG Kai, ZUO Wangmeng, CHEN Yunjin, et al. Beyond a Gaussian denoiser: Residual learning of deep CNN for image denoising[J]. IEEE Transactions on Image Processing, 2017, 26(7): 3142–3155. doi: 10.1109/TIP.2017.2662206.
    [17] ZHANG Kai, ZUO Wangmeng, GU Shuhang, et al. Learning deep CNN denoiser prior for image restoration[C]. IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, USA, 2017: 2808–2817. doi: 10.1109/CVPR.2017.300.
    [18] ZHANG Kai, ZUO Wangmeng, and ZHANG Lei. FFDNet: Toward a fast and flexible solution for CNN-based image denoising[J]. IEEE Transactions on Image Processing, 2018, 27(9): 4608–4622. doi: 10.1109/TIP.2018.2839891.
    [19] ZHAO Mingchao, WEN Youwei, NG M, et al. A nonlocal low rank model for Poisson noise removal[J]. Inverse Problems and Imaging, 2021, 15(3): 519–537. doi: 10.3934/ipi.2021003.
    [20] CHEN Yunjin and PORK T. Trainable nonlinear reaction diffusion: A flexible framework for fast and effective image restoration[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(6): 1256–1272. doi: 10.1109/TPAMI.2016.2596743.
    [21] ELAD M and YAVNEH I. A plurality of sparse representations is better than the sparsest one alone[J]. IEEE Transactions on Information Theory, 2009, 55(10): 4701–4714. doi: 10.1109/TIT.2009.2027565.
    [22] DONG Weisheng, ZHANG Lei, SHI Guangming, et al. Nonlocally centralized sparse representation for image restoration[J]. IEEE Transactions on Image Processing, 2013, 22(4): 1620–1630. doi: 10.1109/TIP.2012.2235847.
    [23] CHEN Yong, HE Wei, YOKOYA N, et al. Hyperspectral image restoration using weighted group sparsity-regularized low-rank tensor decomposition[J]. IEEE Transactions on Cybernetics, 2020, 50(8): 3556–3570. doi: 10.1109/TCYB.2019.2936042.
    [24] CAI Jianfeng, CANDèS E J, and SHEN Zuowei. A singular value thresholding algorithm for matrix completion[J]. SIAM Journal on Optimization, 2010, 20(4): 1956–1982. doi: 10.1137/080738970.
    [25] KUMAR G P and SAHAY R R. Low rank Poisson denoising (LRPD): A low rank approach using split Bregman algorithm for Poisson noise removal from images[C]. IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, Long Beach, USA, 2019: 1907–1916. doi: 10.1109/CVPRW.2019.00242.
    [26] BOYD S, PARIKH N, CHU E, et al. Distributed optimization and statistical learning via the alternating direction method of multipliers[J]. Foundations and Trends? in Machine Learning, 2011, 3(1): 1–122. doi: 10.1561/2200000016.
    [27] WEN Youwei and CHAN R H. Parameter selection for total-variation-based image restoration using discrepancy principle[J]. IEEE Transactions on Image Processing, 2012, 21(4): 1770–1781. doi: 10.1109/TIP.2011.2181401.
    [28] ZORAN D and WEISS Y. From learning models of natural image patches to whole image restoration[C]. IEEE International Conference on Computer Vision, Barcelona, Spain, 2011: 479–486. doi: 10.1109/ICCV.2011.6126278.
    [29] TALEBI H and MILANFAR P. Global image denoising[J]. IEEE Transactions on Image Processing, 2014, 23(2): 755–768. doi: 10.1109/TIP.2013.2293425.
    [30] LUO Enming, CHAN S H, and NGUYEN T Q. Adaptive image denoising by mixture adaptation[J]. IEEE Transactions on Image Processing, 2016, 25(10): 4489–4503. doi: 10.1109/TIP.2016.2590318.
    [31] PANG Jiahao and CHEUNG G. Graph Laplacian regularization for image denoising: Analysis in the continuous domain[J]. IEEE Transactions on Image Processing, 2017, 26(4): 1770–1785. doi: 10.1109/TIP.2017.2651400.
    [32] LIU Haosen and TAN Shan. Image regularizations based on the sparsity of corner points[J]. IEEE Transactions on Image Processing, 2019, 28(1): 72–87. doi: 10.1109/TIP.2018.2862357.
    [33] HUANG Jiabin, SINGH A, and AHUJA N. Single image super-resolution from transformed self-exemplars[C]. IEEE Conference on Computer Vision and Pattern Recognition, Boston, USA, 2015: 5197–5206. doi: 10.1109/CVPR.2015.7299156.
    [34] AZZARI L and FOI A. Variance stabilization for noisy+estimate combination in iterative Poisson denoising[J]. IEEE Signal Processing Letters, 2016, 23(8): 1086–1090. doi: 10.1109/LSP.2016.2580600.
    [35] LEHTINEN J, MUNKBERG J, HASSELGREN J, et al. Noise2Noise: Learning image restoration without clean data[C]. Proceedings of the 35th International Conference on Machine Learning, Stockholm, Sweden, 2018: 2965–2974.
    [36] MITTAL A, MOORTHY A K, and BOVIK A C. No-reference image quality assessment in the spatial domain[J]. IEEE Transactions on Image Processing, 2012, 21(12): 4695–4708. doi: 10.1109/TIP.2012.2214050.
  • 加載中
圖(8) / 表(6)
計(jì)量
  • 文章訪問數(shù):  389
  • HTML全文瀏覽量:  140
  • PDF下載量:  72
  • 被引次數(shù): 0
出版歷程
  • 收稿日期:  2024-04-23
  • 修回日期:  2025-01-24
  • 網(wǎng)絡(luò)出版日期:  2025-02-09
  • 刊出日期:  2025-02-28

目錄

    /

    返回文章
    返回