一级黄色片免费播放|中国黄色视频播放片|日本三级a|可以直接考播黄片影视免费一级毛片

高級搜索

留言板

尊敬的讀者、作者、審稿人, 關于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復。謝謝您的支持!

姓名
郵箱
手機號碼
標題
留言內容
驗證碼

復值Hopfield神經(jīng)網(wǎng)絡的信號盲檢測一步計算電路

洪慶輝 孫辰 肖平旦 韋正苗 杜四春

洪慶輝, 孫辰, 肖平旦, 韋正苗, 杜四春. 復值Hopfield神經(jīng)網(wǎng)絡的信號盲檢測一步計算電路[J]. 電子與信息學報, 2024, 46(11): 4123-4131. doi: 10.11999/JEIT240224
引用本文: 洪慶輝, 孫辰, 肖平旦, 韋正苗, 杜四春. 復值Hopfield神經(jīng)網(wǎng)絡的信號盲檢測一步計算電路[J]. 電子與信息學報, 2024, 46(11): 4123-4131. doi: 10.11999/JEIT240224
HONG Qinghui, SUN Chen, XIAO Pingdan, WEI Zhengmiao, DU Sichun. One-step Calculation Circuit of Blind Signal Detection using Complex-valued Hopfield Neural Network[J]. Journal of Electronics & Information Technology, 2024, 46(11): 4123-4131. doi: 10.11999/JEIT240224
Citation: HONG Qinghui, SUN Chen, XIAO Pingdan, WEI Zhengmiao, DU Sichun. One-step Calculation Circuit of Blind Signal Detection using Complex-valued Hopfield Neural Network[J]. Journal of Electronics & Information Technology, 2024, 46(11): 4123-4131. doi: 10.11999/JEIT240224

復值Hopfield神經(jīng)網(wǎng)絡的信號盲檢測一步計算電路

doi: 10.11999/JEIT240224 cstr: 32379.14.JEIT240224
基金項目: 國家自然科學基金(62234008, 62371186),湖湘青年英才項目(2023RC3103),湖南省自然科學基金(2023JJ30168, 2022JJ30160, 2021JJ40111),國家重點研發(fā)計劃(2022YFB3903800)
詳細信息
    作者簡介:

    洪慶輝:男,副教授,研究方向為模擬存算一體電路設計及應用

    孫辰:男,碩士生,研究方向為復數(shù)神經(jīng)網(wǎng)絡電路設計

    肖平旦:男,博士生,研究方向為基于憶阻器的存內計算電路設計及其應用

    韋正苗:男,博士生,研究方向為模擬電路求解矩陣方程的新方法及其應用

    杜四春:男,副教授,研究方向為模擬/混合、射頻集成電路設計

    通訊作者:

    杜四春 jt_dsc@hnu.edu.cn

  • 中圖分類號: TN402

One-step Calculation Circuit of Blind Signal Detection using Complex-valued Hopfield Neural Network

Funds: The National Natural Science Foundation of China (62234008, 62371186), Huxiang Young Talents Project (2023RC3103), The Natural Science Foundation of Hunan Province(2023JJ30168, 2022JJ30160, 2021JJ40111), The National Key R&D Program of China (2022YFB3903800)
  • 摘要: 信號盲檢測在大規(guī)模通信網(wǎng)絡中具有重要的意義并得到了廣泛的應用,如何快速得到信號盲檢測結果是新一代實時通信網(wǎng)絡的迫切需求。為此,該文從模擬電路的角度設計了一種能加速信號盲檢測的復值Hopfield神經(jīng)網(wǎng)絡(CHNN)電路,該電路可一步完成大規(guī)模并行計算,提高信號盲檢測速度,同時該電路可以通過調整憶阻器的電導和輸入電壓來實現(xiàn)可編程功能。Pspice仿真結果表明,該電路的計算精度可達99%以上,運行時間比Matlab軟件仿真快3個數(shù)量級,此外,該電路具有良好的魯棒性,即使在20%的噪聲干擾下,仍能保持99%以上的計算精度。
  • 圖  1  信號盲檢測的處理過程

    圖  2  K=8時的復值激活函數(shù)

    圖  3  復值乘法電路

    圖  4  復值激活函數(shù)電路

    圖  5  復值激活函數(shù)電路輸出結果

    圖  6  信號盲檢測CHNN電路

    圖  7  憶阻器的兩種模式

    圖  8  CHNN電路處理流程圖

    圖  9  CHNN電路的輸出結果

    圖  10  電路精度及BER性能比較

    圖  11  電壓噪聲波形及噪聲干擾下電路的精度

    圖  12  線電阻干擾下電路的精度

    圖  13  不同隨機誤差條件下電路的平均精度

    圖  14  憶阻器編程失敗情況下電路的平均精度

    表  1  電路和軟件計算時間比較(ms)

    輸入信號數(shù)量計算時間
    PspiceMatlab
    5 階0.0019.5
    10 階0.0310.8
    20 階0.0411.2
    40 階0.0713.3
    80 階0.1615.2
    下載: 導出CSV

    表  2  不同硬件的計算時間

    方式其他電路[19]FPGA[22]DSP[22]
    計算時間8.2$ \times $3.8$ \times $8.2$ \times $
    下載: 導出CSV
  • [1] SATO Y. A method of self-recovering equalization for multilevel amplitude-modulation systems[J]. IEEE Transactions on Communications, 1975, 23(6): 679–682. doi: 10.1109/TCOM.1975.1092854.
    [2] TONG Lang, XU Guanghan, and KAILATH T. Blind identification and equalization based on second-order statistics: A time domain approach[J]. IEEE Transactions on Information Theory, 1994, 40(2): 340–349. doi: 10.1109/18.312157.
    [3] LI Jin, FENG Dazheng, and LI Bingbing. Space-time blind equalization of dispersive MIMO systems driven by QAM signals[J]. IEEE Transactions on Vehicular Technology, 2018, 67(5): 4136–4148. doi: 10.1109/TVT.2018.2790432.
    [4] HU Rong, YU Shujuan, ZHANG Yun, et al. WSN blind detection based on SOS[C]. The 11th World Congress on Intelligent Control and Automation, Shenyang, China, 2014: 5763–5766. doi: 10.1109/WCICA.2014.7053704.
    [5] LV Zhisheng, FENG Bin, and TAN Li. An improved dual-mode blind equalization algorithm for QAM signals[C]. 2022 6th International Conference on Robotics and Automation Sciences (ICRAS), Wuhan, China, 2022: 283–287. doi: 10.1109/ICRAS55217.2022.9842274.
    [6] BLOCHBERGER M, ELVANDER F, ALI R, et al. Distributed cross-relation-based frequency-domain blind system identification using online-admm[C]. 2022 International Workshop on Acoustic Signal Enhancement (IWAENC), Bamberg, Germany, 2022: 1–5. doi: 10.1109/IWAENC53105.2022.9914714.
    [7] YUAN Kang, ZHUO Junnan, GAO Wei, et al. Diffusion constant modulus algorithm for blind equalization[C]. 2022 IEEE International Conference on Signal Processing, Communications and Computing (ICSPCC), Xi’an, China, 2022: 1–6. doi: 10.1109/ICSPCC55723.2022.9984630.
    [8] XIAO Ying and DONG Yuhua. Blind equalization based on neural network under LS criterion by gradient iteration algorithm[C]. 2009 Fifth International Conference on Natural Computation, Tianjian, China, 2009: 91–94. doi: 10.1109/ICNC.2009.134.
    [9] ZHANG Yun and ZHANG Zhiyong. Blind 8PSK signals detection using discrete complex-valued Hopfield network[C]. 2010 IEEE 12th International Conference on Communication Technology, Nanjing, China, 2010: 983–986. doi: 10.1109/ICCT.2010.5688787.
    [10] WU Jinwen, JIN Haihong, YU Shujuan, et al. A novel blind detection algorithm based on multi-clustering complex neural network[C]. Proceedings of 2021 IEEE 4th Advanced Information Management, Communicates, Electronic and Automation Control Conference (IMCEC), Chongqing, China, 2021: 1017–1021. doi: 10.1109/IMCEC51613.2021.9482354.
    [11] MEI Ruru, WANG Zhugang, and HU Wanru. Robust blind equalization algorithm using convolutional neural network[J]. IEEE Signal Processing Letters, 2022, 29: 1569–1573. doi: 10.1109/LSP.2022.3189319.
    [12] XIE Xihai, FAN Chenzhao, WANG Shuai, et al. Varible step size multi-layer neural network blind equalization algorithm[C]. 2022 4th International Conference on Natural Language Processing (ICNLP), Xi’an, China, 2022: 477–481. doi: 10.1109/ICNLP55136.2022.00087.
    [13] ZHANG Hui, GU M, JIANG Xudong, et al. An optical neural chip for implementing complex-valued neural network[J]. Nature Communications, 2021, 12(1): 457. doi: 10.1038/s41467-020-20719-7.
    [14] YU Yaning and ZHANG Ziye. State estimation for complex-valued inertial neural networks with multiple time delays[J]. Mathematics, 2022, 10(10): 1725. doi: 10.3390/math10101725.
    [15] HONG Qinghui, FU Haotian, LIU Yiyang, et al. In-memory computing circuit implementation of complex-valued hopfield neural network for efficient portrait restoration[J]. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 2023, 42(10): 3338–3351. doi: 10.1109/TCAD.2023.3242858.
    [16] NISHIKAWA I, IRITANI T, and SAKAKIBARA K. Improvements of the traffic signal control by complex-valued Hopfield networks[C]. The 2006 IEEE International Joint Conference on Neural Network Proceedings, Vancouver, Canada, 2006: 459–464. doi: 10.1109/IJCNN.2006.246717.
    [17] 王雷敏, 程佳俊, 胡成, 等. 基于改進的憶阻器在字符聯(lián)想記憶中的應用[J]. 電子與信息學報, 2023, 45(7): 2667–2674. doi: 10.11999/JEIT220709.

    WANG Leimin, CHENG Jiajun, HU Cheng, et al. Application of improved memristor in character associative memory[J]. Journal of Electronics & Information Technology, 2023, 45(7): 2667–2674. doi: 10.11999/JEIT220709.
    [18] UYKAN Z. Shadow-Cuts minimization/maximization and complex Hopfield neural networks[J]. IEEE Transactions on Neural Networks and Learning Systems, 2021, 32(3): 1096–1109. doi: 10.1109/TNNLS.2020.2980237.
    [19] HONG Qinghui, LI Ya, and WANG Xiaoping. Memristive continuous Hopfield neural network circuit for image restoration[J]. Neural Computing and Applications, 2020, 32(12): 8175–8185. doi: 10.1007/s00521-019-04305-7.
    [20] YAN Renao, HONG Qinghui, WANG Chunhua, et al. Multilayer memristive neural network circuit based on online learning for license plate detection[J]. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 2022, 41(9): 3000–3011. doi: 10.1109/TCAD.2021.3121347.
    [21] 肖平旦, 洪慶輝, 杜四春, 等. 基于憶阻器的可編程矩陣行列式求解電路設計及應用[J]. 中國科學: 信息科學, 2023, 53(5): 1008–1025. doi: 10.1360/SSI-2022-0229.

    XIAO Pingdan, HONG Qinghui, DU Sichun, et al. Design and application of a programmable matrix determinant-solving circuit based on memristors[J]. SCIENTIA SINICA Informationis, 2023, 53(5): 1008–1025. doi: 10.1360/SSI-2022-0229.
    [22] YI Qian. FPGA implementation of neural network accelerator[C]. 2018 2nd IEEE Advanced Information Management, Communicates, Electronic and Automation Control Conference (IMCEC), Xi’an, China, 2018: 1903–1906. doi: 10.1109/IMCEC.2018.8469659.
  • 加載中
圖(14) / 表(2)
計量
  • 文章訪問數(shù):  278
  • HTML全文瀏覽量:  72
  • PDF下載量:  66
  • 被引次數(shù): 0
出版歷程
  • 收稿日期:  2024-03-29
  • 修回日期:  2024-10-10
  • 網(wǎng)絡出版日期:  2024-10-16
  • 刊出日期:  2024-11-01

目錄

    /

    返回文章
    返回