一级黄色片免费播放|中国黄色视频播放片|日本三级a|可以直接考播黄片影视免费一级毛片

高級(jí)搜索

留言板

尊敬的讀者、作者、審稿人, 關(guān)于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁(yè)添加留言。我們將盡快給您答復(fù)。謝謝您的支持!

姓名
郵箱
手機(jī)號(hào)碼
標(biāo)題
留言內(nèi)容
驗(yàn)證碼

IP軟核硬件木馬圖譜特征分析檢測(cè)方法

倪林 李霖 張帥 童思程 錢楊

倪林, 李霖, 張帥, 童思程, 錢楊. IP軟核硬件木馬圖譜特征分析檢測(cè)方法[J]. 電子與信息學(xué)報(bào), 2024, 46(11): 4151-4160. doi: 10.11999/JEIT240219
引用本文: 倪林, 李霖, 張帥, 童思程, 錢楊. IP軟核硬件木馬圖譜特征分析檢測(cè)方法[J]. 電子與信息學(xué)報(bào), 2024, 46(11): 4151-4160. doi: 10.11999/JEIT240219
NI Lin, LI Lin, ZHANG Shuai, TONG Sicheng, QIAN Yang. Graph Features Analysis and Detection Method of IP Soft Core Hardware Trojan[J]. Journal of Electronics & Information Technology, 2024, 46(11): 4151-4160. doi: 10.11999/JEIT240219
Citation: NI Lin, LI Lin, ZHANG Shuai, TONG Sicheng, QIAN Yang. Graph Features Analysis and Detection Method of IP Soft Core Hardware Trojan[J]. Journal of Electronics & Information Technology, 2024, 46(11): 4151-4160. doi: 10.11999/JEIT240219

IP軟核硬件木馬圖譜特征分析檢測(cè)方法

doi: 10.11999/JEIT240219 cstr: 32379.14.JEIT240219
詳細(xì)信息
    作者簡(jiǎn)介:

    倪林:男,博士生,講師,研究方向?yàn)橛布踩⒕W(wǎng)絡(luò)安全等

    李霖:男,研究方向?yàn)橛布踩?/p>

    張帥:男,博士生,講師,研究方向?yàn)橛布踩⒕W(wǎng)絡(luò)安全等

    童思程:男,研究方向?yàn)橛布踩?/p>

    錢楊:男,研究方向?yàn)橛布踩?/p>

    通訊作者:

    張帥 zhangshuai16a@nudt.edu.cn

  • 中圖分類號(hào): TN915.08; TP309.1

Graph Features Analysis and Detection Method of IP Soft Core Hardware Trojan

  • 摘要: 隨著集成電路技術(shù)的飛速發(fā)展,芯片在設(shè)計(jì)、生產(chǎn)和封裝過程中,很容易被惡意植入硬件木馬邏輯,當(dāng)前IP軟核的安全檢測(cè)方法邏輯復(fù)雜、容易錯(cuò)漏且無(wú)法對(duì)加密IP軟核進(jìn)行檢測(cè)。該文利用非可控IP軟核與硬件木馬寄存器傳輸級(jí)(RTL)代碼灰度圖譜的特征差異,提出一種基于圖譜特征分析的IP軟核硬件木馬檢測(cè)方法,通過圖譜轉(zhuǎn)換和圖譜增強(qiáng)得到標(biāo)準(zhǔn)圖譜,利用紋理特征提取匹配算法實(shí)現(xiàn)硬件木馬檢測(cè)。實(shí)驗(yàn)使用設(shè)計(jì)階段被植入7類典型木馬的功能邏輯單元為實(shí)驗(yàn)對(duì)象,檢測(cè)結(jié)果顯示7類典型硬件木馬的檢測(cè)正確率均達(dá)到了90%以上,圖像增強(qiáng)后特征點(diǎn)匹配成功數(shù)量的平均增長(zhǎng)率達(dá)到了13.24%,有效提高了硬件木馬檢測(cè)的效率。
  • 圖  1  IP軟核硬件木馬檢測(cè)流程

    圖  2  硬件木馬圖譜庫(kù)生成流程

    圖  3  同一圖像進(jìn)行圖像增強(qiáng)前后對(duì)比

    圖  4  硬件木馬圖譜圖像增強(qiáng)前后對(duì)比圖

    圖  5  成功匹配特征點(diǎn)的圖譜紋理特征檢測(cè)

    圖  6  圖像增強(qiáng)前后的圖譜特征匹配結(jié)果

    圖  7  不同分辨率下木馬圖譜特征點(diǎn)總數(shù)

    圖  8  硬件木馬圖譜紋理特征匹配檢測(cè)結(jié)果

    圖  9  B19-T100硬件木馬與含PIC16F84-T100樣本的匹配檢測(cè)結(jié)果

    圖  10  B19-T100硬件木馬與含B19-T100樣本的匹配檢測(cè)結(jié)果

    表  1  7種硬件木馬分類原理特點(diǎn)對(duì)照表

    插入階段抽象層次激活機(jī)制效果物理特性
    B19-T100設(shè)計(jì)階段門級(jí)基于內(nèi)部時(shí)間的觸發(fā)改變功能緊密、功能性、布局相同
    PIC16F84-T100設(shè)計(jì)階段寄存器傳輸級(jí)別內(nèi)部條件觸發(fā)服務(wù)拒絕功能性
    s35932-T100設(shè)計(jì)階段門級(jí)內(nèi)部條件觸發(fā)改變功能,泄露信息功能性
    AES-T100設(shè)計(jì)階段寄存器傳輸級(jí)別始終激活泄露信息功能性
    wb_conmax-T100設(shè)計(jì)階段門級(jí)內(nèi)部條件觸發(fā)改變功能,拒絕服務(wù)功能性
    BasicRSA-T100設(shè)計(jì)階段寄存器傳輸級(jí)別外部用戶輸入觸發(fā)泄露信息功能性
    RS232-T100設(shè)計(jì)階段寄存器傳輸級(jí)別內(nèi)部條件觸發(fā)拒絕服務(wù)功能性
    下載: 導(dǎo)出CSV

    表  2  7種木馬圖譜圖像增強(qiáng)前后的圖譜特征提取匹配結(jié)果

    木馬類型圖像增強(qiáng)前圖像增強(qiáng)后
    特征點(diǎn)總數(shù)匹配成功的數(shù)量特征點(diǎn)總數(shù)匹配成功的數(shù)量
    B19-T10046445048
    PIC16F84-T1006666
    s35932-T10040374139
    AES-T10022222525
    wb_conmax-T1001071311
    BasicRSA-T10063496551
    RS232-T10051305231
    下載: 導(dǎo)出CSV

    表  3  BasicRSA-T100在寬度為25不同高度下的匹配結(jié)果

    255075100125150175200
    特征點(diǎn)總數(shù)5462626568686868
    匹配成功的數(shù)量2737475161525252
    匹配成功率(%)50.0059.6875.8178.4689.7176.4776.4776.47
    下載: 導(dǎo)出CSV

    表  4  BasicRSA-T100在高度為100不同寬度下的匹配結(jié)果

    255075100125150175200
    特征點(diǎn)總數(shù)6560818080808080
    匹配成功的數(shù)量5144656767676767
    匹配成功率(%)78.4673.3380.2583.7583.7583.7583.7583.75
    下載: 導(dǎo)出CSV
  • [1] 楊達(dá)明, 黃姣英, 高成. 工藝偏差影響下硬件木馬檢測(cè)功率分析方法[J]. 計(jì)算機(jī)工程與應(yīng)用, 2018, 54(24): 1–5,45. doi: 10.3778/j.issn.1002-8331.1810-0197.

    YANG Daming, HUANG Jiaoying, and GAO Cheng. Power analysis method of hardware Trojan detection considering process variation[J]. Computer Engineering and Applications, 2018, 54(24): 1–5,45. doi: 10.3778/j.issn.1002-8331.1810-0197.
    [2] 劉志強(qiáng), 張銘津, 池源, 等. 一種深度學(xué)習(xí)的硬件木馬檢測(cè)算法[J]. 西安電子科技大學(xué)學(xué)報(bào), 2019, 46(6): 37–45. doi: 10.19665/j.issn1001-2400.2019.06.006.

    LIU Zhiqiang, ZHANG Mingjin, CHI Yuan, et al. Hardware Trojan detection algorithm based on deep learning[J]. Journal of Xidian University, 2019, 46(6): 37–45. doi: 10.19665/j.issn1001-2400.2019.06.006.
    [3] 成祥, 李磊, 程偉. 基于RTL級(jí)硬件木馬的檢測(cè)方法[J]. 微電子學(xué)與計(jì)算機(jī), 2017, 34(3): 56–60. doi: 10.19304/j.cnki.issn1000-7180.2017.03.012.

    CHENG Xiang, LI Lei, and CHENG Wei. A detection method of hardware Trojans based on RTL[J]. Microelectronics & Computer, 2017, 34(3): 56–60. doi: 10.19304/j.cnki.issn1000-7180.2017.03.012.
    [4] SANKAR V and NIRMALA DEVI M. Efficient hardware Trojan detection using generic feature extraction and weighted ensemble method[C]. The ICACIT 2021 on Advanced Computing and Intelligent Technologies, Singapore, Singapore, 2022: 165–181. doi: 10.1007/978-981-16-2164-2_14.
    [5] 謝俊, 周慧忠, 厲小燕, 等. 基于旁路分析的集成電路芯片硬件木馬檢測(cè)分析[J]. 電子技術(shù)與軟件工程, 2022(18): 112–115.

    XIE Jun, ZHOU Huizhong, LI Xiaoyan, et al. Hardware Trojan detection and analysis of integrated circuit chips based on bypass analysis[J]. Electronic Technology and Software Engineering, 2022(18): 112–115.
    [6] 徐皓, 易茂祥, 金禮玉, 等. 電路分區(qū)自比較的硬件木馬檢測(cè)方法[J]. 合肥工業(yè)大學(xué)學(xué)報(bào): 自然科學(xué)版, 2022, 45(12): 1630–1636. doi: 10.3969/j.issn.1003-5060.2022.12.007.

    XU Hao, YI Maoxiang, JIN Liyu, et al. Hardware Trojan detection method based on circuit partition self-comparison[J]. Journal of Hefei University of Technology: Natural Science, 2022, 45(12): 1630–1636. doi: 10.3969/j.issn.1003-5060.2022.12.007.
    [7] 趙毅強(qiáng), 李博文, 馬浩誠(chéng), 等. 基于混合特征分析的硬件木馬檢測(cè)方法[J]. 華中科技大學(xué)學(xué)報(bào): 自然科學(xué)版, 2021, 49(5): 1–6. doi: 10.13245/j.hust.210501.

    ZHAO Yiqiang, LI Bowen, MA Haocheng, et al. Hardware Trojan detection method based on combined features analysis[J]. Journal of Huazhong University of Science and Technology: Natural Science Edition, 2021, 49(5): 1–6. doi: 10.13245/j.hust.210501.
    [8] JOSE F, PRIYATHARISHINI M, and NIRMALA DEVI M. Hardware Trojan detection using deep learning-generative adversarial network and stacked auto encoder neural networks[C]. The ICT Analysis and Applications, Singapore, Singapore, 2022: 203–210. doi: 10.1007/978-981-16-5655-2_19.
    [9] 李林源, 徐金甫, 嚴(yán)迎建, 等. 基于多維特征的門級(jí)硬件木馬檢測(cè)技術(shù)[J]. 計(jì)算機(jī)工程與應(yīng)用, 2023, 59(18): 278–284. doi: 10.3778/j.issn.1002-8331.2206-0101.

    LI Linyuan, XU Jinfu, YAN Yingjian, et al. Hardware Trojan detection for gate-level netlists based on multidimensional features[J]. Computer Engineering and Applications, 2023, 59(18): 278–284. doi: 10.3778/j.issn.1002-8331.2206-0101.
    [10] 楊歡, 李海明. MLDet: 基于結(jié)構(gòu)特征和XGBoost的硬件木馬檢測(cè)方法[J]. 計(jì)算機(jī)應(yīng)用與軟件, 2023, 40(11): 302–307. doi: 10.3969/j.issn.1000-386x.2023.11.045.

    YANG Huan and LI Haiming. MLDet: Hardware Trojan detection method based on structural features and XGBoost[J]. Computer Applications and Software, 2023, 40(11): 302–307. doi: 10.3969/j.issn.1000-386x.2023.11.045.
    [11] 史江義, 溫聰, 劉鴻瑾, 等. 基于圖神經(jīng)網(wǎng)絡(luò)的門級(jí)硬件木馬檢測(cè)方法[J]. 電子與信息學(xué)報(bào), 2023, 45(9): 3253–3262. doi: 10.11999/JEIT221201.

    SHI Jiangyi, WEN Cong, LIU Hongjin, et al. Hardware Trojan detection for gate-level netlists based on graph neural network[J]. Journal of Electronics & Information Technology, 2023, 45(9): 3253–3262. doi: 10.11999/JEIT221201.
    [12] PAN Zhixin and MISHRA P. Hardware Trojan detection using side -channel analysis[M]. PAN Zhixin and MISHRA P. Explainable AI for Cybersecurity. Cham: Springer, 2023: 123–140. doi: 10.1007/978-3-031-46479-9_6.
    [13] JYOTHI V and RAJENDRAN J. Hardware Trojan attacks in FPGA and protection approaches[M]. BHUNIA S and TEHRANIPOOR M. The Hardware Trojan War: Attacks, Myths, and Defenses. Cham: Springer, 2018: 345–368. doi: 10.1007/978-3-319-68511-3_14.
    [14] ABDELLATIF K M, CORNESSE C, FOURNIER J, et al. New partitioning approach for hardware Trojan detection using side-channel measurements[C]. Proceedings of the 12th International Symposium on Applied Reconfigurable Computing, Mangaratiba, Brazil, 2016: 171–182. doi: 10.1007/978-3-319-30481-6_14.
    [15] VINOD G, RAMESH S R, and NIRMALA DEVI M. Simulation based hardware Trojan detection using path delay analysis[M]. RANGANATHAN G, FERNANDO X, and ROCHA á. Inventive Communication and Computational Technologies. Singapore: Springer, 2022: 853–863. doi: 10.1007/978-981-19-4960-9_64.
    [16] NOZAWA K, HASEGAWA K, HIDANO S, et al. Adversarial examples for hardware-Trojan detection at gate-level netlists[C]. Proceedings of the ESORICS 2019 International Workshops, CyberICPS, SECPRE, SPOSE, and ADIoT on Computer Security, Luxembourg City, Luxembourg, 2020: 341–359. doi: 10.1007/978-3-030-42048-2_22.
  • 加載中
圖(10) / 表(4)
計(jì)量
  • 文章訪問數(shù):  216
  • HTML全文瀏覽量:  132
  • PDF下載量:  25
  • 被引次數(shù): 0
出版歷程
  • 收稿日期:  2024-03-29
  • 修回日期:  2024-09-05
  • 網(wǎng)絡(luò)出版日期:  2024-09-28
  • 刊出日期:  2024-11-01

目錄

    /

    返回文章
    返回