蜂窩網(wǎng)絡下同時同頻全雙工設備到設備組網(wǎng)的干擾協(xié)調(diào)算法
doi: 10.11999/JEIT240120 cstr: 32379.14.JEIT240120
-
1.
電子科技大學通信抗干擾全國重點實驗室 成都 611731
-
2.
中國電信股份有限公司研究院移動與終端技術(shù)研究所 北京 102200
Interference Coordination Algorithm of Co-frequency and Co-time Full Duplex Device-to-Device underlaying Cellular Network
-
1.
National Key Laboratory of Science and Technology on Communications, University of Electronic Science and Technology of China, Chengdu 611731, China
-
2.
Institute of Mobile and Terminal Technology, China Telecom Research Institute, Beijing 102200, China
-
摘要: 蜂窩網(wǎng)絡下的同時同頻全雙工(CCFD)設備到設備(D2D)組網(wǎng)可以進一步提升網(wǎng)絡頻譜效率,然而由此引入的殘余自干擾(RSI)及蜂窩用戶(CU)與D2D用戶(DU)之間共享頻譜的干擾會嚴重影響到蜂窩用戶的體驗。因此,該文為蜂窩網(wǎng)絡下同時同頻全雙工組網(wǎng)設計了兩種干擾協(xié)調(diào)算法,即CU和速率最大化算法(MaxSumCU)與CU最小速率最大化算法(MaxMinCU),在小區(qū)頻譜效率得到提升的同時盡可能地保證CU的體驗。對于MaxSumCU算法,該文以CU和速率為優(yōu)化目標建立混合整數(shù)非線性規(guī)劃問題(MINLP),其在數(shù)學上為非確定性多項式(NP-hard)問題。算法將其分解為功率控制與頻譜資源分配兩個子問題,并用圖形規(guī)劃找到最優(yōu)功率解后,使用二向圖最大權(quán)值匹配算法決定頻譜共享的CU與DU。為了保證每一個蜂窩用戶體驗的公平性,該文設計了MaxMinCU算法用以最大化所有CU速率中的最小值,該算法基于二分查找與二向圖最小權(quán)值匹配算法來完成用戶的資源分配。數(shù)值結(jié)果表明,與小區(qū)和速率最大化(MaxSumCell)設計相比,該文所提的兩種算法在提升小區(qū)和速率的同時均有效地提升了蜂窩用戶的體驗。
-
關鍵詞:
- 蜂窩網(wǎng)絡下設備到設備組網(wǎng) /
- 同時同頻全雙工 /
- 二向圖最大(小)權(quán)值匹配 /
- 公平性算法
Abstract: The Residual Self-Interference (RSI) caused by Co-frequency and Co-time Full Duplex Device-to-Device (CCFD-D2D) and the interference introduced by spectrum sharing between D2D User (DU) and Cellular User (CU) lead to a degradation in the quality of experience for CUs. Therefore, the CCFD-D2D underlaying cellular system is considered and two algorithms are proposed, that is Maximizing Sum-rate of CU (MaxSumCU) and Maximizing Minimum-rate of CU (MaxMinCU) algorithm, to enhance the experience for CUs while spectral efficiency of the system is improved. For the MaxSumCU algorithm, an optimization problem is investigated to maximize the sum rate of CUs in the system, and formulate it as a Mixed Integer NonLinear Programming problem (MINLP) which is NP-hard in mathematics. MaxSumCU is designed to decompose it into two sub-problems as power control and spectral resource allocation. The power control is solved by geometric programming, and the resource allocation is achieved by employing Kuhn-Munkres algorithm to determine the spectrum sharing pairs of CUs and DUs. To provide a more uniform rate performance across all CUs, the MaxMinCU algorithm is designed to maximize the minimum rate among the CUs. The novel spectrum resource allocation algorithm based on bisection searching and Kuhn-Munkres minimum-weight algorithm is proposed to solve this optimization problem. Numerical results show that, compared with Maximizing Sum-rate of Cell (MaxSumCell) design, our proposed algorithm effectively optimize the CU’s experience while improve the spectral efficiency of system in CCFD-D2D underlaying cellular networks. -
1 公平性算法
(1) 計算已配對CU的速率矩陣$ {{\{R}_{i,j}^{\mathrm{C}}\}}_{Q\times P} $。 (2) 對$ {{\{R}_{i,j}^{\mathrm{C}}\}}_{Q\times P} $中元素降序排列成向量$ \mathit{v} $,并初始化索引
$ m=1,n=QP $。(3) while $ (n-m) > 1 $ do (4) $ l=(n-m)/2 $; (5) 初始化一個矩陣$ {\left\{{F}_{i,j}\right\}}_{Q\times P} $,并為其中元素賦值,
$ {R}_{i,j}^{{\mathrm{C}}} < \mathit{v}\left(l\right) $時對應位置賦1,否則為0(6) 對$ {\left\{{F}_{i,j}\right\}}_{Q\times P} $使用KM最小權(quán)值算法,返回分配指示矩陣
$ {\mathit{E}}_{Q\times P} $與對應的權(quán)值$ w $。(7) if $ w=0 $ then (8) $ n=l $; (9) else (10) $ m=l $; (11) $ {\left\{{\rho }_{i,j}\right\}}_{Q\times P}=\mathit{E} $; (12) end if (13)end while (14)在$ {{\{R}_{i,j}^{\mathrm{C}}\cdot {\rho }_{i,j}\}}_{Q\times P} $中搜索除0元素外最小的元素,即為最大
CU最小速率$ {R}_{i,j}^{{\mathrm{C}},\mathrm{m}\mathrm{i}\mathrm{n}} $。(15)返回$ {\left\{{\rho }_{i,j}\right\}}_{Q\times P} $與$ \mathrm{max}{R}_{i,j}^{\mathrm{C},\mathrm{m}\mathrm{i}\mathrm{n}} $。 下載: 導出CSV
-
[1] ZHANG Hongliang, SONG Lingyang, and HAN Zhu. Radio resource allocation for device-to-device underlay communication using hypergraph theory[J]. IEEE Transactions on Wireless Communications, 2016, 15(7): 4852–4861. doi: 10.1109/TWC.2016.2547862. [2] NI Minming and PAN Jianping. Throughput analysis for downlink resource reusing D2D communications in cellular networks[C]. 2017 IEEE Global Communications Conference, Singapore, 2017: 1–7. doi: 10.1109/GLOCOM.2017.8254846. [3] LEE N, LIN Xingqin, ANDREWS J G, et al. Power control for D2D underlaid cellular networks: Modeling, algorithms, and analysis[J]. IEEE Journal on Selected Areas in Communications, 2015, 33(1): 1–13. doi: 10.1109/JSAC.2014.2369612. [4] KAI Caihong, WU Yan, PENG Min, et al. Joint uplink and downlink resource allocation for NOMA-enabled D2D communications[J]. IEEE Wireless Communications Letters, 2021, 10(6): 1247–1251. doi: 10.1109/LWC.2021.3063169. [5] KAI Caihong, LI Hui, XU Lei, et al. Joint subcarrier Assignment with power allocation for sum rate maximization of D2D communications in wireless cellular networks[J]. IEEE Transactions on Vehicular Technology, 2019, 68(5): 4748–4759. doi: 10.1109/TVT.2019.2903815. [6] 徐磊. 5G蜂窩網(wǎng)絡中D2D通信的資源分配算法研究[D]. [碩士論文], 合肥工業(yè)大學, 2019.XU Lei. Research on resource allocation algorithms for D2D communications in 5G cellular networks[D]. [Master dissertation], Hefei University of Technology, 2019. [7] SHI Chengzhe, PAN Wensheng, and SHAO Shihai. RF wideband self-interference cancellation for full duplex phased array communication systems[C]. 2022 IEEE International Conference on Communications, Seoul, Korea, 2022: 1094–1099. doi: 10.1109/ICC45855.2022.9838572. [8] SHI Chengzhe, PAN Wensheng, SHEN Ying, et al. Robust transmit beamforming for self-interference cancellation in STAR phased array systems[J]. IEEE Signal Processing Letters, 2022, 29: 2622–2626. doi: 10.1109/LSP.2022.3229641. [9] YANG Tinghan, ZHANG Rongqing, CHENG Xiang, et al. Graph coloring based resource sharing (GCRS) scheme for D2D communications underlaying full-duplex cellular networks[J]. IEEE Transactions on Vehicular Technology, 2017, 66(8): 7506–7517. doi: 10.1109/TVT.2017.2657791. [10] HEMACHANDRA K T, RAJATHEVA N, and LATVA-AHO M. Sum-rate analysis for full-duplex underlay device-to-device networks[C]. 2014 IEEE Wireless Communications and Networking Conference, Istanbul, Turkey, 2014: 514–519. doi: 10.1109/WCNC.2014.6952081. [11] NGUYEN T H and NGUYEN T T. On performance of STAR-RIS-enabled multiple two-way full-duplex D2D communication systems[J]. IEEE Access, 2022, 10: 89063–89071. doi: 10.1109/ACCESS.2022.3200834. [12] YANG Yihuai, YANG Bin, SHEN Shikai, et al. Covert rate study for full-duplex D2D communications underlaid cellular networks[J]. IEEE Internet of Things Journal, 2023, 10(17): 15223–15237. doi: 10.1109/JIOT.2023.3265275. [13] VU H V, TRAN N H, and LE-NGOC T. Full-duplex device-to-device cellular networks: Power control and performance analysis[J]. IEEE Transactions on Vehicular Technology, 2019, 68(4): 3952–3966. doi: 10.1109/TVT.2019.2898999. [14] FENG Daquan, LU Lu, YI Yuanwu, et al. Device-to-device communications underlaying cellular networks[J]. IEEE Transactions on Communications, 2013, 61(8): 3541–3551. doi: 10.1109/TCOMM.2013.071013.120787. [15] LIANG Le, LI G Y, and XU Wei. Resource allocation for D2D-enabled vehicular communications[J]. IEEE Transactions on Communications, 2017, 65(7): 3186–3197. doi: 10.1109/TCOMM.2017.2699194. -