一级黄色片免费播放|中国黄色视频播放片|日本三级a|可以直接考播黄片影视免费一级毛片

高級(jí)搜索

留言板

尊敬的讀者、作者、審稿人, 關(guān)于本刊的投稿、審稿、編輯和出版的任何問(wèn)題, 您可以本頁(yè)添加留言。我們將盡快給您答復(fù)。謝謝您的支持!

姓名
郵箱
手機(jī)號(hào)碼
標(biāo)題
留言內(nèi)容
驗(yàn)證碼

面向超表面天線設(shè)計(jì)的95~105 GHz SiGe BiCMOS寬帶數(shù)控衰減器

羅將 張文柱 程強(qiáng)

羅將, 張文柱, 程強(qiáng). 面向超表面天線設(shè)計(jì)的95~105 GHz SiGe BiCMOS寬帶數(shù)控衰減器[J]. 電子與信息學(xué)報(bào), 2025, 47(2): 344-352. doi: 10.11999/JEIT240059
引用本文: 羅將, 張文柱, 程強(qiáng). 面向超表面天線設(shè)計(jì)的95~105 GHz SiGe BiCMOS寬帶數(shù)控衰減器[J]. 電子與信息學(xué)報(bào), 2025, 47(2): 344-352. doi: 10.11999/JEIT240059
LUO Jiang, ZHANG Wenzhu, CHENG Qiang. Design of 95~105 GHz SiGe BiCMOS Wideband Digitally Controlled Attenuator for Metasurface Antenna[J]. Journal of Electronics & Information Technology, 2025, 47(2): 344-352. doi: 10.11999/JEIT240059
Citation: LUO Jiang, ZHANG Wenzhu, CHENG Qiang. Design of 95~105 GHz SiGe BiCMOS Wideband Digitally Controlled Attenuator for Metasurface Antenna[J]. Journal of Electronics & Information Technology, 2025, 47(2): 344-352. doi: 10.11999/JEIT240059

面向超表面天線設(shè)計(jì)的95~105 GHz SiGe BiCMOS寬帶數(shù)控衰減器

doi: 10.11999/JEIT240059 cstr: 32379.14.JEIT240059
基金項(xiàng)目: 國(guó)家重點(diǎn)研發(fā)計(jì)劃(2023YFB3811503),浙江省自然科學(xué)基金(LQ23F040009),毫米波國(guó)家重點(diǎn)實(shí)驗(yàn)室(K202316)
詳細(xì)信息
    作者簡(jiǎn)介:

    羅將:男,副教授,研究方向?yàn)橹悄艹砻嬲{(diào)控器件與芯片、毫米波單片集成電路與系統(tǒng)

    張文柱:男,碩士生,研究方向?yàn)楣杌撩撞ǚ瓤刂齐娐吩O(shè)計(jì)

    程強(qiáng):男,教 授,研究方向?yàn)槿斯る姶挪牧?、天線、微波毫米波成像、射頻電路、雷達(dá)系統(tǒng)

    通訊作者:

    羅將 luojiang@hdu.edu.cn

  • 中圖分類號(hào): TN433

Design of 95~105 GHz SiGe BiCMOS Wideband Digitally Controlled Attenuator for Metasurface Antenna

Funds: The National Key Research and Development Program of China (2023YFB3811503), Zhejiang Provincial Natural Science Foundation of China (LQ23F040009), The State Key Laboratory of Millimeter Waves (K202316)
  • 摘要: 近年來(lái),因?qū)﹄姶挪ň邆潇`活的調(diào)控能力,超表面天線技術(shù)受到來(lái)自通信、雷達(dá)以及天線領(lǐng)域?qū)W者的廣泛關(guān)注。其中,超表面天線單元中所使用的有源調(diào)控器件,是決定整個(gè)系統(tǒng)性能的最關(guān)鍵部件之一。該文基于0.13 μm SiGe BiCMOS工藝設(shè)計(jì)了一個(gè)95~105 GHz的五位寬帶數(shù)控衰減器芯片。該衰減器采用了反射式和簡(jiǎn)化T型兩種拓?fù)浣Y(jié)構(gòu),其中4 dB與8 dB反射式衰減單元采用交叉耦合寬帶耦合器代替?zhèn)鹘y(tǒng)的3 dB耦合器或定向耦合器,同時(shí)獲得了高衰減精度和低插入損耗;而0.5 dB, 1 dB, 2 dB三個(gè)衰減單元均采用簡(jiǎn)化T型結(jié)構(gòu)。此外,利用RC正斜率和負(fù)斜率校正網(wǎng)絡(luò)分別應(yīng)用于不同的衰減單元進(jìn)行相位補(bǔ)償,極大地改善了衰減器的附加相移。經(jīng)過(guò)仿真驗(yàn)證,在95~105 GHz的感興趣工作頻率內(nèi),衰減器芯片在0.12 mm2的緊湊的尺寸下實(shí)現(xiàn)了0~15.5 dB的衰減范圍,步進(jìn)為0.5 dB,基態(tài)插入損耗小于2.5 dB,幅度均方根誤差小于0.31 dB,附加相移均方根誤差小于2.2o。所提出的W波段衰減器可作為一個(gè)關(guān)鍵部件賦能集成T/R的輻散一體化超表面天線系統(tǒng)的硬件實(shí)現(xiàn)。
  • 圖  1  反射式衰減單元的拓?fù)浣Y(jié)構(gòu)圖

    圖  2  衰減量與歸一化負(fù)載阻抗的關(guān)系

    圖  3  所提出的耦合器的3維物理模型

    圖  4  耦合器在端口匹配時(shí)與傳統(tǒng)傳輸線的插入損耗仿真結(jié)果

    圖  5  等效電路模型

    圖  6  等效電路模型和3維物理模型仿真結(jié)果對(duì)比

    圖  7  相位補(bǔ)償結(jié)構(gòu)

    圖  8  不同相位補(bǔ)償結(jié)構(gòu)下阻抗的相位和模值隨頻率變化的響應(yīng)曲線

    圖  9  W波段5位數(shù)控衰減器原理圖

    圖  10  W波段5位數(shù)控衰減器版圖

    圖  11  全態(tài)衰減曲線

    圖  12  所有衰減態(tài)下相位變化曲線

    圖  13  插入損耗變化曲線

    圖  14  RMSA與RMSP曲線

    表  1  等效電路模型元器件的參數(shù)值

    器件 參數(shù)值 器件 參數(shù)值
    L1 85.3 pH C1 0.5 fF
    L2 22.0 pH C2 2.7 fF
    L3 13.0 pH C3 12.8 fF
    R1 1.9 Ω C4 0.7 fF
    k 0.7
    下載: 導(dǎo)出CSV

    表  2  關(guān)鍵器件參數(shù)

    器件 參數(shù)值 器件 參數(shù)值 器件 參數(shù)值 器件 參數(shù)值
    T1,2(W/L) 120 nm/630 nm C1,2,4 20 fF R4 1298 Ω R9 81 Ω
    T3(W/L) 120 nm/1050 nm C3 12 fF R5 57 Ω R10 223 Ω
    T4(W/L) 120 nm/850 nm R1 126 Ω R6 2273 Ω
    T5(W/L) 120 nm/900 nm R2 301 Ω R7 190 Ω
    T6,7(W/L) 120 nm/1200 nm R3 1433 Ω R8 100 Ω
    W:發(fā)射極寬度;L:發(fā)射極長(zhǎng)度
    下載: 導(dǎo)出CSV

    表  3  性能總結(jié)和已報(bào)道的硅基毫米波衰減器芯片對(duì)比

    文獻(xiàn) 2014[6] 2012[18] 2018[21] 2022[20] #本文
    工藝 65 nm
    CMOS
    180 nm
    SiGe BiCMOS
    65 nm
    CMOS
    130 nm
    SiGe BiCMOS
    130 nm
    SiGe BiCMOS
    頻率(GHz) 50~110 57~64 80~110 190~220 95~105
    拓?fù)浣Y(jié)構(gòu) Distributed Distributed Coupled Coupled lines Reflected+T type
    位數(shù)(bit)/步進(jìn)(dB) 14/0.75 4/1.0 6/NA 4/0.35 5/0.50
    衰減范圍(dB) 0~10.0 0~11.8 0~14.5 0~4.7 0~15.5
    插入損耗(dB) 11.2 11.0 4.5* 2.0 2.5
    幅度均方根誤差(RMSA)(dB) NA <1.54 <0.31 <0.34 <0.31
    相位變化(o) <5.0 12.0* <12.0 NA <4.8
    相位均方根誤差(RMSP)(o) <1.4 <3.6 NA NA <2.2
    面積(mm2) 0.38 0.94 0.06 0.03 0.12
    *:估算;#:仿真結(jié)果
    下載: 導(dǎo)出CSV
  • [1] CUI Tiejun, LIU Shuo, and ZHANG Lei. Information metamaterials and metasurfaces[J]. Journal of Materials Chemistry C, 2017, 5(15): 3644–3668. doi: 10.1039/C7TC00548B.
    [2] CHENG Qiang, ZHANG Lei, DAI Junyan, et al. Reconfigurable intelligent surfaces: Simplified-architecture transmitters—from theory to implementations[J]. Proceedings of the IEEE, 2022, 110(9): 1266–1289. doi: 10.1109/JPROC.2022.3170498.
    [3] ZHAO Chenxi, GUO Jiawei, LIU Huihua, et al. A 33–41-GHz SiGe-BiCMOS digital step attenuator with minimized unit impedance variation[J]. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 2021, 29(3): 568–579. doi: 10.1109/TVLSI.2020.3046016.
    [4] CHEON C D, RAO S G, LIM W, et al. Design methodology for a wideband, low insertion loss, digital step attenuator in SiGe BiCMOS technology[J]. IEEE Transactions on Circuits and Systems II: Express Briefs, 2022, 69(3): 744–748. doi: 10.1109/TCSII.2021.3111177.
    [5] RAO S G, CHEON C D, and CRESSLER J D. A millimeter-wave, transformer-based, SiGe distributed attenuator[J]. IEEE Microwave and Wireless Components Letters, 2022, 32(2): 145–148. doi: 10.1109/LMWC.2021.3118291.
    [6] KIM K, LEE H S, and MIN B W. V-W band CMOS distributed step attenuator with low phase imbalance[J]. IEEE Microwave and Wireless Components Letters, 2014, 24(8): 548–550. doi: 10.1109/LMWC.2014.2322442.
    [7] BAE J and NGUYEN C. A novel concurrent 22–29/57–64-GHz dual-band CMOS step attenuator with low phase variations[J]. IEEE Transactions on Microwave Theory and Techniques, 2016, 64(6): 1867–1875. doi: 10.1109/TMTT.2016.2546256.
    [8] HE Yang, ZHANG Tiedi, TANG Yichen, et al. Wideband pHEMT digital attenuator with positive voltage control driver[J]. IEEE Microwave and Wireless Technology Letters, 2023, 33(2): 295–298. doi: 10.1109/LMWC.2022.3215495.
    [9] JEONG J C, UHM M, JANG D P, et al. A Ka-band GaAs multi-function chip with wide-band 6-bit phase shifters and attenuators for satellite applications[C]. 2019 13th European Conference on Antennas and Propagation (EuCAP), Krakow, Poland, 2019: 1–4.
    [10] ZHANG Qingfeng, ZHAO Chenxi, ZHANG Shuangmin, et al. Mechanism analysis and design of a switched T-type attenuator with capacitive phase compensation technique[J]. IEEE Microwave and Wireless Technology Letters, 2023, 33(10): 1438–1441. doi: 10.1109/LMWT.2023.3303181.
    [11] LI Nayu, ZHANG Zijiang, LI Min, et al. A DC–28-GHz 7-bit high-accuracy digital-step attenuator in 55-nm CMOS[J]. IEEE Microwave and Wireless Components Letters, 2022, 32(2): 157–160. doi: 10.1109/LMWC.2021.3120934.
    [12] YUAN Ye, MU Shanxiang, and GUO Yongxin. 6-bit step attenuators for phased-array system with temperature compensation technique[J]. IEEE Microwave and Wireless Components Letters, 2018, 28(8): 690–692. doi: 10.1109/LMWC.2018.2849224.
    [13] BAE J, LEE J, and NGUYEN C. A 10–67-GHz CMOS dual-function switching attenuator with improved flatness and large attenuation range[J]. IEEE Transactions on Microwave Theory and Techniques, 2013, 61(12): 4118–4129. doi: 10.1109/TMTT.2013.2288694.
    [14] KU B H and HONG S. 6-bit CMOS digital attenuators with low phase variations for X-band phased-array systems[J]. IEEE Transactions on Microwave Theory and Techniques, 2010, 58(7): 1651–1663. doi: 10.1109/TMTT.2010.2049691.
    [15] BULJA S and RULIKOWSKI P. High dynamic range reflection-type attenuator[C]. 2018 IEEE Radio and Antenna Days of the Indian Ocean (RADIO), Wolmar, Mauritius, 2018: 1–2. doi: 10.23919/RADIO.2018.8572448.
    [16] YISHAY R B and ELAD D. W-band SiGe attenuators based on compact low-VSWR topologies[C]. 2017 IEEE MTT-S International Microwave Symposium (IMS), Honololu, USA, 2017: 638–641. doi: 10.1109/MWSYM.2017.8058650.
    [17] PU Yuqian, SHEN Hongchang, TANG Feihong, et al. Design of millimeter-wave reflective attenuators with capacitive compensation technique[J]. Journal of Southeast University (English Edition), 2023, 39(2): 153–160. doi: 10.3969/j.issn.1003-7985.2023.02.006.
    [18] BULJA S and GREBENNIKOV A. Variable reflection-type attenuators based on varactor diodes[J]. IEEE Transactions on Microwave Theory and Techniques, 2012, 60(12): 3719–3727. doi: 10.1109/TMTT.2012.2216895.
    [19] ZHU Wei, WANG Jiawen, WANG Ruitao, et al. 14.5 A 1V W-band bidirectional transceiver front-end with <1dB T/R switch loss, <1°/dB phase/gain resolution and 12.3% TX PAE at 15.1dBm output power in 65nm CMOS technology[C]. 2021 IEEE International Solid-State Circuits Conference (ISSCC), San Francisco, USA, 2021: 226–228. doi: 10.1109/ISSCC42613.2021.9365944.
    [20] ZHU Nengxu and MENG Fanyi. A 190-to-220GHz 4-bit passive attenuator with 1.4dB insertion loss and sub-0.4dB RMS amplitude error using magnetically switchable coupled-lines in 0.13-μm CMOS technology[C]. 2022 IEEE/MTT-S International Microwave Symposium - IMS 2022, Denver, USA, 2022: 746–749. doi: 10.1109/IMS37962.2022.9865616.
    [21] 趙麗. 新一代寬帶無(wú)線互聯(lián)網(wǎng)射頻收發(fā)機(jī)及關(guān)鍵芯片的研究與設(shè)計(jì)[D]. [博士論文], 東南大學(xué), 2018.

    ZHAO Li. Investigations on RF transceivers and related integrated circuits for a new generation broadband wireless internet[D]. [Ph. D. dissertation], Southeast University, 2018. (in Chinese).
    [22] LUO Jiang, HE Jin, CHEN Pengwei, et al. Micro-strip line 90° phase shifter with double ground slots for D-band applications[J]. Journal of Circuits, Systems and Computers, 2018, 27(12): 1850192. doi: 10.1142/S021812661850192X.
  • 加載中
圖(14) / 表(3)
計(jì)量
  • 文章訪問(wèn)數(shù):  414
  • HTML全文瀏覽量:  158
  • PDF下載量:  27
  • 被引次數(shù): 0
出版歷程
  • 收稿日期:  2024-01-26
  • 修回日期:  2024-09-05
  • 網(wǎng)絡(luò)出版日期:  2024-09-10
  • 刊出日期:  2025-02-28

目錄

    /

    返回文章
    返回