一级黄色片免费播放|中国黄色视频播放片|日本三级a|可以直接考播黄片影视免费一级毛片

高級搜索

留言板

尊敬的讀者、作者、審稿人, 關(guān)于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復。謝謝您的支持!

姓名
郵箱
手機號碼
標題
留言內(nèi)容
驗證碼

采用自適應預篩選的遙感圖像目標開集檢測研究

黨思航 李曉哲 夏召強 蔣曉悅 桂術(shù)亮 馮曉毅

黨思航, 李曉哲, 夏召強, 蔣曉悅, 桂術(shù)亮, 馮曉毅. 采用自適應預篩選的遙感圖像目標開集檢測研究[J]. 電子與信息學報, 2024, 46(10): 3908-3917. doi: 10.11999/JEIT231426
引用本文: 黨思航, 李曉哲, 夏召強, 蔣曉悅, 桂術(shù)亮, 馮曉毅. 采用自適應預篩選的遙感圖像目標開集檢測研究[J]. 電子與信息學報, 2024, 46(10): 3908-3917. doi: 10.11999/JEIT231426
DANG Sihang, LI Xiaozhe, XIA Zhaoqiang, JIANG Xiaoyue, GUI Shuliang, FENG Xiaoyi. Research on Open-Set Object Detection in Remote Sensing Images Based on Adaptive Pre-Screening[J]. Journal of Electronics & Information Technology, 2024, 46(10): 3908-3917. doi: 10.11999/JEIT231426
Citation: DANG Sihang, LI Xiaozhe, XIA Zhaoqiang, JIANG Xiaoyue, GUI Shuliang, FENG Xiaoyi. Research on Open-Set Object Detection in Remote Sensing Images Based on Adaptive Pre-Screening[J]. Journal of Electronics & Information Technology, 2024, 46(10): 3908-3917. doi: 10.11999/JEIT231426

采用自適應預篩選的遙感圖像目標開集檢測研究

doi: 10.11999/JEIT231426 cstr: 32379.14.JEIT231426
基金項目: 國家自然科學基金(62201461, 62301101),上海市2022年度“科技創(chuàng)新行動計劃”啟明星培育(揚帆專項)項目(22YF1452100),陜西省科技廳秦創(chuàng)原項目(QCYRCXM-2022-325),陜西省重點研發(fā)計劃(2023-ZDLGY-16, 2023-ZDLGY-44, 2023-ZDLGY-12, 2021-ZDLGY15-01, 2021-ZDLGY09-04, 2021GY-004, 2022-ZDLGY06-07),重慶市博士“直通車”科研項目(sl202100000315)
詳細信息
    作者簡介:

    黨思航:男,副教授,研究方向為雷達目標識別、增量學習

    李曉哲:男,碩士,研究方向為目標檢測、開集識別

    夏召強:男,副教授,研究方向為圖像處理、計算機視覺

    蔣曉悅:女,副教授,研究方向為圖像處理、計算機視覺

    桂術(shù)亮:男,講師,研究方向為雷達信號處理、目標檢測

    馮曉毅:女,教授,研究方向為圖像處理、計算機視覺

    通訊作者:

    夏召強 zxia@nwpu.edu.cn

  • 中圖分類號: TP75

Research on Open-Set Object Detection in Remote Sensing Images Based on Adaptive Pre-Screening

Funds: The National Natural Science Foundation of China(62201461, 62301101), Shanghai Sailing Program (22YF1452100), The QINCHUANGYUAN Program (QCYRCXM-2022-325), The Key Research and Development Program of Shaanxi (2023-ZDLGY-16, 2023-ZDLGY-44, 2023-ZDLGY-12, 2021-ZDLGY15-01, 2021-ZDLGY09-04, 2021GY-004, 2022-ZDLGY06-07), Chongqing Doctoral Direct Train Research Project (sl202100000315)
  • 摘要: 開放動態(tài)環(huán)境下目標類別不斷豐富,遙感目標檢測問題不能局限于已知類目標的鑒別,還需要對未知類目標做出有效判決。該文設計一種基于自適應預篩選的遙感開集目標檢測網(wǎng)絡,首先,提出面向目標候選框的自適應預篩選模塊,依據(jù)篩選出的候選框坐標得到具有豐富語義信息和空間特征的查詢傳遞至解碼器。然后,結(jié)合原始圖像中目標邊緣信息提出一種偽標簽選取方法,并以開集判決為目的構(gòu)造損失函數(shù),提高網(wǎng)絡對未知新類特征的學習能力。最后,采用MAR20飛機目標識別數(shù)據(jù)集模擬不同的開放動態(tài)遙感目標檢測環(huán)境,通過廣泛的對比實驗和消融實驗,驗證了該文方法能夠?qū)崿F(xiàn)對已知類目標的可靠檢測和未知類目標的有效檢出。
  • 圖  1  網(wǎng)絡總體結(jié)構(gòu)

    圖  2  自適應預篩選模塊

    圖  3  MAR20數(shù)據(jù)集部分圖像展示

    圖  4  MAR20測試集示例圖像定性結(jié)果

    1  基于圖像邊緣信息的偽標簽選取算法

     輸入:當前迭代$ t $條件下:對應特征圖$ \boldsymbol{A} $;經(jīng)過DDETR匹配機制剩余的預測候選框$ {{\boldsymbol}}_{i}^{{\mathrm{F}}} $;基于圖像邊緣信息生成的候選框$ {{\boldsymbol}}_{j}^{{\mathrm{E}}} $;損失存儲隊
     列$ {L}_{m} $;微調(diào)參數(shù)$ {\lambda }_{p} $和$ {\lambda }_{n} $;權(quán)重更新迭代次數(shù)$ {T}_{w} $;權(quán)重值$ {w}_{1} $和$ {w}_{2} $;偽標簽個數(shù)$ u $
     輸出:當前迭代$ t $條件下:圖像的偽標簽
     1. while train do:
     2. 式(1)初步得到基于卷積特征的目標置信度得分$ F\left({{\boldsymbol}}_{i}^{{\mathrm{F}}}\right) $;
     3. 式(3)得到基于圖像底層邊緣信息的目標置信度得分S$ \left({{\boldsymbol}}_{i}^{\mathrm{{E}}}\right) $;
     4. if $ t\mathrm{\%}{T}_{w}==0 $ then:
     5. 使用式(7)和$ {L}_{m} $計算$ \Delta l $;
     6. 使用式(8)計算$ \Delta w $;
     7. 使用式(5)更新權(quán)重值$ {w}_{1} $和$ {w}_{2} $;
     8. end if
     9. 使用式(4)得到剩余的預測候選框$ {{\boldsymbol}}_{i}^{{\mathrm{F}}} $的最終目標置信度分數(shù)$ {F}_{i}^{{\mathrm{new}}} $;
     10. 對$ {F}_{i}^{\mathrm{n}\mathrm{e}\mathrm{w}} $從大到小排序,選取前$ {u} $個候選框標記“未知類”。
    下載: 導出CSV

    表  1  MAR20數(shù)據(jù)集圖像數(shù)量分布情況

    A1 A2 A3 A4 A5 A6 A7 A8 A9 A10
    168 16 150 70 247 31 100 142 146 146
    A11 A12 A13 A14 A15 A16 A17 A18 A19 A20
    86 66 212 252 108 265 173 37 129 130
    含多類 1017
    總計 3842
    下載: 導出CSV

    表  2  開集目標檢測任務

    實驗編號未知類目標類別訓練與測試比例總計
    #已知類+#未知類已知類未知類訓練測試
    任務10.75A1~A5A6~A20644161805
    任務20.5A1~A10A11~A20736185921
    任務30.25A1~A15A16~A20764192956
    下載: 導出CSV

    表  3  網(wǎng)絡檢測結(jié)果對比(%)

    任務編號 任務1 任務2 任務3
    已知類mAP 未知類召回率 已知類mAP 未知類召回率 已知類mAP 未知類召回率
    Faster-RCNN 73.95 77.84 88.18
    YOLOv3 88.02 88.40 88.86
    DDETR 84.30 87.60 88.95
    OW-DETR 82.52 17.66 87.90 29.68 87.66 30.41
    CAT 77.40 21.21 83.78 36.09 85.05 53.42
    本文算法 89.09 38.67 90.35 47.17 90.38 61.20
    下載: 導出CSV

    表  4  模塊驗證實驗結(jié)果(%)

    模塊任務1消融實驗任務2消融實驗任務3消融實驗
    基準
    模型
    自適應預篩選基于邊緣信息的
    偽標簽選取策略
    已知類mAP未知類
    召回率
    已知類mAP未知類
    召回率
    已知類mAP未知類
    召回率
    82.5217.6687.9029.6887.6630.41
    89.342.4390.835.9689.7413.33
    83.2845.8187.5463.0187.6954.80
    89.0938.6790.3547.1790.3861.20
    下載: 導出CSV
  • [1] ZAIDI S S A, ANSARI M S, ASLAM A, et al. A survey of modern deep learning based object detection models[J]. Digital Signal Processing, 2022, 126: 103514. doi: 10.1016/j.dsp.2022.103514.
    [2] ZOU Zhengxia, CHEN Keyan, SHI Zhenwei, et al. Object detection in 20 years: A survey[J]. Proceedings of the IEEE, 2023, 111(3): 257–276. doi: 10.1109/JPROC.2023.3238524.
    [3] 呂進東, 王彤, 唐曉斌. 基于圖注意力網(wǎng)絡的半監(jiān)督SAR艦船目標檢測[J]. 電子與信息學報, 2023, 45(5): 1541–1549. doi: 10.11999/JEIT220139.

    Lü Jindong, WANG Tong, and TANG Xiaobin. Semi-supervised SAR ship target detection with graph attention network[J]. Journal of Electronics & Information Technology, 2023, 45(5): 1541–1549. doi: 10.11999/JEIT220139.
    [4] 王璽坤, 姜宏旭, 林珂玉. 基于改進型YOLO算法的遙感圖像艦船檢測[J]. 北京航空航天大學學報, 2020, 46(6): 1184–1191. doi: 10.13700/j.bh.1001-5965.2019.0394.

    WANG Xikun, JIANG Hongxu, and LIN Keyu. Remote sensing image ship detection based on modified YOLO algorithm[J]. Journal of Beijing University of Aeronautics and Astronautics, 2020, 46(6): 1184–1191. doi: 10.13700/j.bh.1001-5965.2019.0394.
    [5] AI Jiaqiu, TIAN Ruitian, LUO Qiwu, et al. Multi-scale rotation-invariant Haar-like feature integrated CNN-based ship detection algorithm of multiple-target environment in SAR imagery[J]. IEEE Transactions on Geoscience and Remote Sensing, 2019, 57(12): 10070–10087. doi: 10.1109/TGRS.2019.2931308.
    [6] 黃玉玲, 陶昕辰, 朱濤, 等. 殘差對抗目標檢測算法的遙感圖像檢測[J]. 電光與控制, 2023, 30(7): 63–67. doi: 10.3969/j.issn.1671-637X.2023.07.011.

    HUANG Yuling, TAO Xinchen, ZHU Tao, et al. A remote sensing image detection method based on residuals adversarial object detection algorithm[J]. Electronics Optics & Control, 2023, 30(7): 63–67. doi: 10.3969/j.issn.1671-637X.2023.07.011.
    [7] 馬梁, 茍于濤, 雷濤, 等. 基于多尺度特征融合的遙感圖像小目標檢測[J]. 光電工程, 2022, 49(4): 210363. doi: 10.12086/oee.2022.210363.

    MA Liang, GOU Yutao, LEI Tao, et al. Small object detection based on multi-scale feature fusion using remote sensing images[J]. Opto-Electronic Engineering, 2022, 49(4): 210363. doi: 10.12086/oee.2022.210363.
    [8] REN Shaoqing, HE Kaiming, GIRSHICK R, et al. Faster R-CNN: Towards real-time object detection with region proposal networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(6): 1137–1149. doi: 10.1109/TPAMI.2016.2577031.
    [9] REDMON J, DIVVALA S, GIRSHICK R, et al. You only look once: Unified, real-time object detection[C]. The 2016 IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, USA, 2016: 779–788. doi: 10.1109/CVPR.2016.91.
    [10] REDMON J and FARHADI A. YOLOv3: An incremental improvement[EB/OL]. https://arxiv.org/abs/1804.02767, 2018.
    [11] 邵延華, 張鐸, 楚紅雨, 等. 基于深度學習的YOLO目標檢測綜述[J]. 電子與信息學報, 2022, 44(10): 3697–3708. doi: 10.11999/JEIT210790.

    SHAO Yanhua, ZHANG Duo, CHU Hongyu, et al. A review of YOLO object detection based on deep learning[J]. Journal of Electronics & Information Technology, 2022, 44(10): 3697–3708. doi: 10.11999/JEIT210790.
    [12] CARION N, MASSA F, SYNNAEVE G, et al. End-to-end object detection with transformers[C]. The 16th European Conference on Computer Vision, Glasgow, UK, 2020: 213–229. doi: 10.1007/978-3-030-58452-8_13.
    [13] GENG Chuanxing, HUANG Shengjun, and CHEN Songcan. Recent advances in open set recognition: A survey[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2021, 43(10): 3614–3631. doi: 10.1109/TPAMI.2020.2981604.
    [14] DANG Sihang, CAO Zongjie, CUI Zongyong, et al. Open set incremental learning for automatic target recognition[J]. IEEE Transactions on Geoscience and Remote Sensing, 2019, 57(7): 4445–4456. doi: 10.1109/TGRS.2019.2891266.
    [15] DANG Sihang, XIA Zhaoqiang, JIANG Xiaoyue, et al. Inclusive consistency-based quantitative decision-making framework for incremental automatic target recognition[J]. IEEE Transactions on Geoscience and Remote Sensing, 2023, 61: 5215614. doi: 10.1109/TGRS.2023.3312330.
    [16] JOSEPH K J, KHAN S, KHAN F S, et al. Towards open world object detection[C]. The 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Nashville, USA, 2021: 5826–5836. doi: 10.1109/CVPR46437.2021.00577.
    [17] GUPTA A, NARAYAN S, JOSEPH KJ, et al. OW-DETR: Open-world detection transformer[C]. The 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition, New Orleans, USA, 2022: 9225–9234. doi: 10.1109/CVPR52688.2022.00902.
    [18] MA Shuailei, WANG Yuefeng, WEI Ying, et al. CAT: LoCalization and identification cascade detection transformer for open-world object detection[C]. The 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Vancouver, Canada, 2023: 19681–19690. doi: 10.1109/CVPR52729.2023.01885.
    [19] UIJLINGS J R R, VAN DE SANDE K E A, GEVERS T, et al. Selective search for object recognition[J]. International Journal of Computer Vision, 2013, 104(2): 154–171. doi: 10.1007/s11263-013-0620-5.
    [20] ZOHAR O, WANG K C, and YEUNG S. PROB: Probabilistic objectness for open world object detection[C]. The 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Vancouver, Canada, 2023: 11444–11453. doi: 10.1109/CVPR52729.2023.01101.
    [21] CHENG Gong, XIE Xingxing, HAN Junwei, et al. Remote sensing image scene classification meets deep learning: Challenges, methods, benchmarks, and opportunities[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2020, 13: 3735–3756. doi: 10.1109/JSTARS.2020.3005403.
    [22] ZITNICK C L and DOLLáR P. Edge boxes: Locating object proposals from edges[C]. The 13th European Conference on Computer Vision, Zurich, Switzerland, 2014: 391–405. doi: 10.1007/978-3-319-10602-1_26.
    [23] 禹文奇, 程塨, 王美君, 等. MAR20: 遙感圖像軍用飛機目標識別數(shù)據(jù)集[J]. 遙感學報, 2023, 27(12): 2688–2696. doi: 10.11834/jrs.20222139.

    YU Wenqi, CHENG Gong, WANG Meijun, et al. MAR20: A benchmark for military aircraft recognition in remote sensing images[J]. National Remote Sensing Bulletin, 2023, 27(12): 2688–2696. doi: 10.11834/jrs.20222139.
    [24] ZHU Xizhou, SU Weijie, LU Lewei, et al. Deformable DETR: Deformable transformers for end-to-end object detection[C]. 9th International Conference on Learning Representations, 2021.
  • 加載中
圖(4) / 表(5)
計量
  • 文章訪問數(shù):  492
  • HTML全文瀏覽量:  271
  • PDF下載量:  81
  • 被引次數(shù): 0
出版歷程
  • 收稿日期:  2023-12-02
  • 修回日期:  2024-07-04
  • 網(wǎng)絡出版日期:  2024-07-25
  • 刊出日期:  2024-10-30

目錄

    /

    返回文章
    返回