一级黄色片免费播放|中国黄色视频播放片|日本三级a|可以直接考播黄片影视免费一级毛片

高級搜索

留言板

尊敬的讀者、作者、審稿人, 關于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復。謝謝您的支持!

姓名
郵箱
手機號碼
標題
留言內容
驗證碼

圍長為8的較大列重準循環(huán)低密度奇偶校驗碼的行重普適代數構造

張國華 秦煜 婁蒙娟 方毅

張國華, 秦煜, 婁蒙娟, 方毅. 圍長為8的較大列重準循環(huán)低密度奇偶校驗碼的行重普適代數構造[J]. 電子與信息學報, 2024, 46(7): 3019-3025. doi: 10.11999/JEIT231111
引用本文: 張國華, 秦煜, 婁蒙娟, 方毅. 圍長為8的較大列重準循環(huán)低密度奇偶校驗碼的行重普適代數構造[J]. 電子與信息學報, 2024, 46(7): 3019-3025. doi: 10.11999/JEIT231111
ZHANG Guohua, QIN Yu, LOU Mengjuan, FANG Yi. Row-weight Universal Algebraic Constructions of Girth-8 Quasi-Cyclic Low-Density Parity-Check Codes with Large Column Weights[J]. Journal of Electronics & Information Technology, 2024, 46(7): 3019-3025. doi: 10.11999/JEIT231111
Citation: ZHANG Guohua, QIN Yu, LOU Mengjuan, FANG Yi. Row-weight Universal Algebraic Constructions of Girth-8 Quasi-Cyclic Low-Density Parity-Check Codes with Large Column Weights[J]. Journal of Electronics & Information Technology, 2024, 46(7): 3019-3025. doi: 10.11999/JEIT231111

圍長為8的較大列重準循環(huán)低密度奇偶校驗碼的行重普適代數構造

doi: 10.11999/JEIT231111 cstr: 32379.14.JEIT231111
基金項目: 國家自然科學基金(62322106, 62071131),廣東省國際科技合作項目(2022A0505050070)
詳細信息
    作者簡介:

    張國華:男,研究員,研究方向為信道編碼理論與應用

    秦煜:男,碩士生,研究方向為LDPC碼的構造方法

    婁蒙娟:女,碩士生,研究方向為LDPC碼的構造方法

    方毅:男,教授,研究方向為通信與存儲系統(tǒng)中的信道編碼

    通訊作者:

    方毅 fangyi@gdut.edu.cn

  • 中圖分類號: TN911.22

Row-weight Universal Algebraic Constructions of Girth-8 Quasi-Cyclic Low-Density Parity-Check Codes with Large Column Weights

Funds: The National Natural Science Foundation of China (62322106, 62071131), International Collaborative Research Program of Guangdong Science and Technology Department (2022A0505050070)
  • 摘要: 適合于任意行重(即行重普適(RWU))的無小環(huán)準循環(huán)(QC)低密度奇偶校驗(LDPC)短碼,對于LDPC碼的理論研究和工程應用具有重要意義。具有行重普適特性且消除4環(huán)6環(huán)的現有構造方法,只能針對列重為3和4的情況提供QC-LDPC短碼。該文在最大公約數(GCD)框架的基礎上,對于列重為5和6的情況,提出了3種具有行重普適特性且消除4環(huán)6環(huán)的構造方法。與現有的行重普適方法相比,新方法提供的碼長從目前的與行重呈4次方關系銳減至與行重呈3次方關系,因而可以為QC-LDPC碼的復合構造和高級優(yōu)化等需要較大列重基礎碼的場合提供行重普適的無4環(huán)無6環(huán)短碼。此外,與基于計算機搜索的對稱結構QC-LDPC碼相比,新碼不僅無需搜索、描述復雜度更低,而且具有更好的譯碼性能。
  • 圖  1  新碼與對稱結構碼的譯碼性能對比

    表  1  定理1中的新構造所涉及3元組及其GCD指標

    序號原始3元組簡化后的3元組GCD指標
    1$[0,2,2L{\text{ + }}1]$-$2L + 1$
    2$[0,2,3L]$-$ \ge 3L{\text{/}}2$
    3$[0,2,3L + 1]$-$ \ge (3L + 1){\text{/}}2$
    4$[0,2L + 1,3L]$$({\text{R}})[0,L - 1,3L]$$ \ge L$
    5$[0,2L + 1,3L{\text{ + }}1]$$({\text{R}})[0,L,3L{\text{ + }}1]$$3L + 1$
    6$[0,3L,3L{\text{ + }}1]$$({\text{R}})[0,1,3L{\text{ + }}1]$$3L + 1$
    7$[2,2L + 1,3L]$$({\text{S}})({\text{R}})[0,L - 1,3L - 2]$$3L - 2$
    8$[2,2L + 1,3L{\text{ + }}1]$$({\text{S}})({\text{R}})[0,L,3L - 1]$$3L - 1$
    9$[2,3L,3L{\text{ + }}1]$$({\text{S}})({\text{R}})[0,1,3L - 1]$$3L - 1$
    10$[2L + 1,3L,3L{\text{ + }}1]$$({\text{S}})({\text{R}})[0,1,L]$$L$
    下載: 導出CSV

    表  2  性質1所涉及的2元組及無4環(huán)的原因

    序號原始2元組化簡后的2元組原因
    1$ [0,2] $-引理2
    2$ [0,2L + 1] $-引理2
    3*$ [0,3L] $-需證明
    4$ [0,3L + 1] $$ ({\text{D}})[0,1] $引理2
    5$ [2,2L + 1] $$ ({\text{S}})[0,2L - 1] $引理2
    6*$ [2,3L] $$ ({\text{S}})[0,3L - 2] $需證明
    7*$ [2,3L + 1] $$ ({\text{S}})[0,3L - 1] $需證明
    8$ [2L + 1,3L] $$ ({\text{S}})[0,L - 1] $引理2
    9$ [2L + 1,3L + 1] $$ ({\text{S}})[0,L] $引理2
    10$ [3L,3L + 1] $$ ({\text{S}})[0,1] $同序號4
    下載: 導出CSV

    表  3  性質1所涉及的3元組及無6環(huán)的原因

    序號原始3元組簡化后的3元組原因
    1$[0,2,2L{\text{ + }}1]$-引理1
    2$[0,2,3L]$-引理3
    3*$[0,2,3L + 1]$-需證明
    4$[0,2L + 1,3L]$$ ({\text{R}})[0,L - 1,3L] $引理3
    5$[0,2L + 1,3L{\text{ + }}1]$$ ({\text{R}})[0,L,3L + 1] $引理3
    6$[0,3L,3L{\text{ + }}1]$$ ({\text{R}})[0,1,3L + 1] $引理3
    7*$[2,2L + 1,3L]$$ ({\text{S}})({\text{R}})[0,L - 1,3L - 2] $需證明
    8$[2,2L + 1,3L{\text{ + }}1]$$ ({\text{S}})({\text{R}})[0,L,3L - 1] $引理3
    9*$[2,3L,3L{\text{ + }}1]$$ ({\text{S}})({\text{R}})[0,1,3L - 1] $需證明
    10$[2L + 1,3L,3L{\text{ + }}1]$$ ({\text{S}})({\text{R}})[0,1,L] $引理1
    下載: 導出CSV

    表  4  定理2中的新構造所涉及3元組及其GCD指標

    序號 原始3元組 化簡后的3元組 GCD指標
    1 $ [0,1,2L] $ - $ \begin{array}{*{20}{c}} {2L} \end{array} $
    2 $ [0,1,2L + 2] $ - $ \begin{array}{*{20}{c}} {2L + 2} \end{array} $
    3 $ [0,1,4L + 1] $ - $ \begin{array}{*{20}{c}} {4L + 1} \end{array} $
    4 $ [0,1,4L + 2] $ - $ \begin{array}{*{20}{c}} {4L + 2} \end{array} $
    5 $ [0,2L,2L + 2] $ $ ({\text{R}})[0,2,2L + 2] $ $ \begin{array}{*{20}{c}} {L + 1} \end{array} $
    6 $ [0,2L,4L + 1] $ - $ \begin{array}{*{20}{c}} {4L + 1} \end{array} $
    7 $ [0,2L,4L + 2] $ - $ \begin{array}{*{20}{c}} {2L + 1} \end{array} $
    8 $ [0,2L + 2,4L + 1] $ $ ({\text{R}})[0,2L - 1,4L + 1] $ $ \begin{array}{*{20}{c}} { \ge (4L + 1){\text{/}}3} \end{array} $
    9 $ [0,2L + 2,4L + 2] $ $ \begin{array}{*{20}{c}} {({\text{R}})[0,2L,4L + 2]} \end{array} $ 同序號7
    10 $ [0,4L + 1,4L + 2] $ $ \begin{array}{*{20}{c}} {({\text{R}})[0,1,4L + 2]} \end{array} $ 同序號4
    11 $ [1,2L,2L + 2] $ $ ({\text{S}})({\text{R}})[0,2,2L + 1] $ $ \begin{array}{*{20}{c}} {2L + 1} \end{array} $
    12 $ [1,2L,4L + 1] $ $ ({\text{S}})[0,2L - 1,4L] $ $ \begin{array}{*{20}{c}} {4L} \end{array} $
    13 $ [1,2L,4L + 2] $ $ ({\text{S}})[0,2L - 1,4L + 1] $ 同序號8
    14 $ [1,2L + 2,4L + 1] $ $ \begin{array}{*{20}{c}} {({\text{S}})({\text{R}})[0,2L - 1,4L]} \end{array} $ 同序號12
    15 $ [1,2L + 2,4L + 2] $ $ \begin{array}{*{20}{c}} {({\text{S}})({\text{R}})[0,2L,4L + 1]} \end{array} $ 同序號6
    16 $ [1,4L + 1,4L + 2] $ $ \begin{array}{*{20}{c}} {({\text{S}})({\text{R}})[0,1,4L + 1]} \end{array} $ 同序號3
    17 $ [2L,2L + 2,4L + 1] $ $ ({\text{S}})\begin{array}{*{20}{c}} {[0,2,2L + 1]} \end{array} $ 同序號11
    18 $ [2L,2L + 2,4L + 2] $ $ ({\text{S}})\begin{array}{*{20}{c}} {[0,2,2L + 2]} \end{array} $ 同序號5
    19 $ [2L,4L + 1,4L + 2] $ $ \begin{array}{*{20}{c}} {({\text{S}})({\text{R}})[0,1,2L + 2]} \end{array} $ 同序號2
    20 $ [2L + 2,4L + 1,4L + 2] $ $({\text{S}})({\text{R}})[0,1,2L]$ 同序號1
    下載: 導出CSV

    表  5  定理3中的新構造所涉及3元組及其GCD指標

    序號 原始3元組 化簡后的3元組 GCD指標
    1 $ [0,L,L + 1] $ $ ({\text{R}})[0,1,L + 1] $ $ \begin{array}{*{20}{c}} {L + 1} \end{array} $
    2 $ [0,L,3L + 1] $ - $ \begin{array}{*{20}{c}} {3L + 1} \end{array} $
    3 $ [0,L,3L + 2] $ - $ \begin{array}{*{20}{c}} { \ge (3L + 2){\text{/}}2} \end{array} $
    4 $ [0,L,4L + 2] $ - $ \begin{array}{*{20}{c}} { \ge 2L + 1} \end{array} $
    5 $ [0,L + 1,3L + 1] $ - $ \begin{array}{*{20}{c}} { \ge (3L + 1){\text{/}}2} \end{array} $
    6 $ [0,L + 1,3L + 2] $ - $ \begin{array}{*{20}{c}} {3L + 2} \end{array} $
    7 $ [0,L + 1,4L + 2] $ - $ \begin{array}{*{20}{c}} { \ge 2L + 1} \end{array} $
    8 $ [0,3L + 1,3L + 2] $ $ ({\text{R}})[0,1,3L + 2] $ $ \begin{array}{*{20}{c}} {3L + 2} \end{array} $
    9 $ [0,3L + 1,4L + 2] $ $ ({\text{R}})[0,L + 1,4L + 2] $ 同序號7
    10 $ [0,3L + 2,4L + 2] $ $ ({\text{R}})[0,L,4L + 2] $ 同序號4
    11 $ [L,L + 1,3L + 1] $ $ ({\text{S}})[0,1,2L + 1] $ $ \begin{array}{*{20}{c}} {2L + 1} \end{array} $
    12 $ [L,L + 1,3L + 2] $ $ ({\text{S}})[0,1,2L + 2] $ $ \begin{array}{*{20}{c}} {2L + 2} \end{array} $
    13 $ [L,L + 1,4L + 2] $ $ ({\text{S}})[0,1,3L + 2] $ 同序號8
    14 $ [L,3L + 1,3L + 2] $ $ ({\text{S}})({\text{R}})[0,1,2L + 2] $ 同序號12
    15 $ [L,3L + 1,4L + 2] $ $ ({\text{S}})({\text{R}})[0,L + 1,3L + 2] $ 同序號6
    16 $ [L,3L + 2,4L + 2] $ $ ({\text{S}})({\text{R}})[0,L,3L + 2] $ 同序號3
    17 $ [L + 1,3L + 1,3L + 2] $ $ ({\text{S}})({\text{R}})[0,1,2L + 1] $ 同序號11
    18 $ [L + 1,3L + 1,4L + 2] $ $ ({\text{S}})({\text{R}})[0,L + 1,3L + 1] $ 同序號5
    19 $ [L + 1,3L + 2,4L + 2] $ $ ({\text{S}})({\text{R}})[0,L,3L + 1] $ 同序號2
    20 $ [3L + 1,3L + 2,4L + 2] $ $ ({\text{S}})[0,1,L + 1] $ 同序號1
    下載: 導出CSV
  • [1] ZHANG Lintao and WANG Juhua. Construction of QC-LDPC codes from Sidon sequence using permutation and segmentation[J]. IEEE Communications Letters, 2022, 26(8): 1710–1714. doi: 10.1109/LCOMM.2022.3177511.
    [2] AMIRZADE F, SADEGHI M R, and PANARIO D. Construction of protograph-based LDPC codes with chordless short cycles[J]. IEEE Transactions on Information Theory, 2024, 70(1): 51–74. doi: 10.1109/TIT.2023.3307583.
    [3] SMARANDACHE R and MITCHELL D G M. A unifying framework to construct QC-LDPC Tanner graphs of desired girth[J]. IEEE Transactions on Information Theory, 2022, 68(9): 5802–5822. doi: 10.1109/TIT.2022.3170331.
    [4] VASIC B, PEDAGANI K, and IVKOVIC M. High-rate girth-eight low-density parity-check codes on rectangular integer lattices[J]. IEEE Transactions on Communications, 2004, 52(8): 1248–1252. doi: 10.1109/TCOMM.2004.833037.
    [5] FOSSORIER M P C. Quasic-cyclic low-density parity-check codes from circulant permutation matrices[J]. IEEE Transactions on Information Theory, 2004, 50(8): 1788–1793. doi: 10.1109/TIT.2004.831841.
    [6] BOCHAROVA I E, KUDRYASHOV B D, OVSYANNIKOV E P, et al. Design and analysis of NB QC-LDPC codes over small alphabets[J]. IEEE Transactions on Communications, 2022, 70(5): 2964–2976. doi: 10.1109/TCOMM.2022.3160176.
    [7] TASDIGHI A, BANIHASHEMI A H, and SADEGHI M R. Symmetrical constructions for regular girth-8 QC-LDPC codes[J]. IEEE Transactions on Communications, 2017, 65(1): 14–22. doi: 10.1109/TCOMM.2016.2617335.
    [8] 張國華, 王新梅. 圍長至少為8的QC-LDPC碼的新構造: 一種顯式框架[J]. 電子學報, 2012, 40(2): 331–337. doi: 10.3969/j.issn.0372-2112.2012.02.020.

    ZHANG Guohua and WANG Xinmei. Novel constructions of QC-LDPC codes with girth at least eight: an explicit framework[J]. Acta Electronica Sinica, 2012, 40(2): 331–337. doi: 10.3969/j.issn.0372-2112.2012.02.020.
    [9] ZHANG Jianhua and ZHANG Guohua. Deterministic girth-eight QC-LDPC codes with large column weight[J]. IEEE Communications Letters, 2014, 18(4): 656–659. doi: 10.1109/LCOMM.2014.030114.132853.
    [10] MAJDZADE M and GHOLAMI M. On the class of high-rate QC-LDPC codes with girth 8 from sequences satisfied in GCD condition[J]. IEEE Communications Letters, 2020, 24(7): 1391–1394. doi: 10.1109/LCOMM.2020.2983019.
    [11] TAO Xiongfei, CHEN Xin, and WANG Bifang. On the construction of QC-LDPC codes based on integer sequence with low error floor[J]. IEEE Communications Letters, 2022, 26(10): 2267–2271. doi: 10.1109/LCOMM.2022.3187435.
    [12] 張軼, 達新宇, 蘇一棟. 利用等差數列構造大圍長準循環(huán)低密度奇偶校驗碼[J]. 電子與信息學報, 2015, 37(2): 394–398. doi: 10.11999/JEIT140538.

    ZHANG Yi, DA Xinyu, and SU Yidong. Construction of quasi-cyclic low-density parity-check codes with a large girth based on arithmetic progression[J]. Journal of Electronics & Information Technology, 2015, 37(2): 394–398. doi: 10.11999/JEIT140538.
    [13] 張國華, 陳超, 楊洋, 等. Girth-8 (3, L)-規(guī)則QC-LDPC碼的一種確定性構造方法[J]. 電子與信息學報, 2010, 32(5): 1152–1156. doi: 10.3724/SP.J.1146.2009.00838.

    ZHANG Guohua, CHEN Chao, YANG Yang, et al. Girth-8 (3, L)-regular QC-LDPC codes based on novel deterministic design technique[J]. Journal of Electronics & Information Technology, 2010, 32(5): 1152–1156. doi: 10.3724/SP.J.1146.2009.00838.
    [14] ZHANG Guohua, HU Yulin, FANG Yi, et al. Relation between GCD constraint and full-length row-multiplier QC-LDPC codes with girth eight[J]. IEEE Communications Letters, 2021, 25(9): 2820–2823. doi: 10.1109/LCOMM.2021.3096386.
    [15] ZHANG Yi and DA Xinyu. Construction of girth-eight QC-LDPC codes from arithmetic progression sequence with large column weight[J]. Electronics Letters, 2015, 51(16): 1257–1259. doi: 10.1049/el.2015.0389.
    [16] 張國華, 孫蓉, 王新梅. 圍長為8的QC-LDPC碼的顯式構造及其在CRT方法中的應用[J]. 通信學報, 2012, 33(3): 171–176. doi: 1000-436X(2012)03-0171-06.

    ZHANG Guohua, SUN Rong, and WANG Xinmei. Explicit construction of girth-eight QC-LDPC codes and its application in CRT method[J]. Journal on Communications, 2012, 33(3): 171–176. doi: 1000-436X(2012)03-0171-06.
    [17] ZHANG Guohua, SUN Rong, and WANG Xinmei. Several explicit constructions for (3, L) QC-LDPC codes with girth at least eight[J]. IEEE Communications Letters, 2013, 17(9): 1822–1825. doi: 10.1109/LCOMM.2013.070913.130966.
    [18] KARIMI M and BANIHASHEMI A H. On the girth of quasi-cyclic protograph LDPC codes[J]. IEEE Transactions on Information Theory, 2013, 59(7): 4542–4552. doi: 10.1109/TIT.2013.2251395.
    [19] ZHANG Guohua, SUN Rong, and WANG Xinmei. Construction of girth-eight QC-LDPC codes from greatest common divisor[J]. IEEE Communications Letters, 2013, 17(2): 369–372. doi: 10.1109/LCOMM.2012.122012.122292.
    [20] WANG Juhua, ZHANG Jianhua, ZHOU Quan, et al. Full-length row-multiplier QC-LDPC codes with girth eight and short circulant sizes[J]. IEEE Access, 2023, 11: 22250–22265. doi: 10.1109/ACCESS.2023.3249464.
    [21] ZHANG Guohua, FANG Yi, and LIU Yuanhua. Automatic verification of GCD constraint for construction of girth-eight QC-LDPC codes[J]. IEEE Communications Letters, 2019, 23(9): 1453–1456. doi: 10.1109/LCOMM.2019.2925792.
  • 加載中
圖(1) / 表(5)
計量
  • 文章訪問數:  323
  • HTML全文瀏覽量:  135
  • PDF下載量:  52
  • 被引次數: 0
出版歷程
  • 收稿日期:  2023-10-12
  • 修回日期:  2024-01-25
  • 網絡出版日期:  2024-02-07
  • 刊出日期:  2024-07-29

目錄

    /

    返回文章
    返回