一级黄色片免费播放|中国黄色视频播放片|日本三级a|可以直接考播黄片影视免费一级毛片

高級(jí)搜索

留言板

尊敬的讀者、作者、審稿人, 關(guān)于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復(fù)。謝謝您的支持!

姓名
郵箱
手機(jī)號(hào)碼
標(biāo)題
留言內(nèi)容
驗(yàn)證碼

基于壓電晶體的聲波激勵(lì)小型化低頻天線技術(shù)研究

扶逸凡 徐國凱 朱祥維 肖紹球 張靖浩 鐘玖平 李婉清 李君儒 王宇航 王子業(yè) 李杜

扶逸凡, 徐國凱, 朱祥維, 肖紹球, 張靖浩, 鐘玖平, 李婉清, 李君儒, 王宇航, 王子業(yè), 李杜. 基于壓電晶體的聲波激勵(lì)小型化低頻天線技術(shù)研究[J]. 電子與信息學(xué)報(bào), 2023, 45(11): 3935-3944. doi: 10.11999/JEIT230914
引用本文: 扶逸凡, 徐國凱, 朱祥維, 肖紹球, 張靖浩, 鐘玖平, 李婉清, 李君儒, 王宇航, 王子業(yè), 李杜. 基于壓電晶體的聲波激勵(lì)小型化低頻天線技術(shù)研究[J]. 電子與信息學(xué)報(bào), 2023, 45(11): 3935-3944. doi: 10.11999/JEIT230914
FU Yifan, XU Guokai, ZHU Xiangwei, XIAO Shaoqiu, ZHANG Jinghao, ZHONG Jiuping, LI Wanqing, LI Junru, WANG Yuhang, WANG Ziye, LI Du. Research on Acoustically Excited Miniaturized Antenna Technology Based on Piezoelectric Crystal in Low-Frequency[J]. Journal of Electronics & Information Technology, 2023, 45(11): 3935-3944. doi: 10.11999/JEIT230914
Citation: FU Yifan, XU Guokai, ZHU Xiangwei, XIAO Shaoqiu, ZHANG Jinghao, ZHONG Jiuping, LI Wanqing, LI Junru, WANG Yuhang, WANG Ziye, LI Du. Research on Acoustically Excited Miniaturized Antenna Technology Based on Piezoelectric Crystal in Low-Frequency[J]. Journal of Electronics & Information Technology, 2023, 45(11): 3935-3944. doi: 10.11999/JEIT230914

基于壓電晶體的聲波激勵(lì)小型化低頻天線技術(shù)研究

doi: 10.11999/JEIT230914 cstr: 32379.14.JEIT230914
基金項(xiàng)目: 國家重點(diǎn)研發(fā)計(jì)劃(2021YFA0716500),南方海洋科學(xué)與工程廣東省實(shí)驗(yàn)室(珠海)資助項(xiàng)目(SML2021SP408),深圳市科創(chuàng)委基礎(chǔ)研究重點(diǎn)項(xiàng)目(2020N259),深圳市科技計(jì)劃(GXWD20201231165807008, 20200830225317001)
詳細(xì)信息
    作者簡介:

    扶逸凡:男,博士生,研究方向?yàn)樾滦蛯?dǎo)航通信系統(tǒng)設(shè)計(jì)

    徐國凱:男,博士生,研究方向?yàn)樾滦碗娦√炀€設(shè)計(jì)

    朱祥維:男,博士,教授,研究方向?yàn)閷?dǎo)航與通信技術(shù)

    肖紹球:男,博士,教授,研究方向?yàn)殡姶泡椛渑c散射

    張靖浩:男,碩士生,研究方向?yàn)槁暡?lì)新原理天線

    鐘玖平:男,博士,副教授,研究方向?yàn)楣怆娋w生長

    李婉清:女,博士后,研究方向?yàn)槁暡?lì)新原理天線、計(jì)算電磁學(xué)

    李君儒:男,博士后,研究方向?yàn)樾滦腕w聲波器件與磁彈耦合

    王宇航:男,博士生,研究方向?yàn)樯漕l與智能感知

    王子業(yè):男,博士生,研究方向?yàn)樾滦腕w聲波器件與磁彈耦合

    李杜:男,博士,副研究員,研究方向?yàn)槲⒉ㄅc電磁場理論

    通訊作者:

    朱祥維  zhuxw666@mail.sysu.edu.cn

  • 中圖分類號(hào): TN822

Research on Acoustically Excited Miniaturized Antenna Technology Based on Piezoelectric Crystal in Low-Frequency

Funds: The National Key Research and Development Program of China (2021YFA0716500), The Project supported by Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai) (SML2021SP408), The Key Basic Research Projects of Shenzhen Science and Technology Commission (2020N259), Shenzhen Science and Technology Program (GXWD20201231165807008, 20200830225317001)
  • 摘要: 水下信息實(shí)時(shí)傳輸?shù)男枨笈c日俱增,水聲通信和光通信等傳統(tǒng)通信手段在傳輸安全性與穩(wěn)定性方面具有先天難以彌補(bǔ)的劣勢(shì),且在傳輸速率方面難以形成突破,因此亟待對(duì)新技術(shù)進(jìn)行研究。為解決此問題,近年一些學(xué)者提出一種新機(jī)理、新材料和新工藝的小型化天線,有望實(shí)現(xiàn)低頻天線在尺寸和性能上的跨越,實(shí)現(xiàn)水下通信技術(shù)的變革。該文對(duì)此類聲波激勵(lì)小型化天線進(jìn)行研究。首先闡述并建立了天線輻射機(jī)理及理論模型,分析了不同材料參數(shù)對(duì)天線性能的影響;然后根據(jù)模型參數(shù)設(shè)計(jì)加工了基于鈮酸鋰(LiNbO3)晶體的壓電型聲波激勵(lì)天線樣機(jī),實(shí)驗(yàn)結(jié)果表明在40.83 kHz諧振頻率處,與同尺寸單極子天線相比,其接收電壓峰值為后者的22倍,輻射效率為400多倍;最后對(duì)天線進(jìn)行了方位測試和輻射效率計(jì)算。上述結(jié)果表明:基于壓電晶體的聲波激勵(lì)天線技術(shù)在低頻段小型化、機(jī)動(dòng)化水下無線通信設(shè)備的應(yīng)用中具有巨大潛力。
  • 圖  1  壓電型聲波激勵(lì)天線的工作原理

    圖  2  模型示意圖

    圖  3  Z切型,長度方向激勵(lì)下的電勢(shì)(箭頭表示電場方向)和應(yīng)力分布

    圖  4  Y36°切型,長度方向激勵(lì)下的電勢(shì)(箭頭表示電場方向)和應(yīng)力分布

    圖  5  輸入阻抗隨長度和寬度的變化

    圖  6  天線加工

    圖  7  快速掃描測試連接框圖

    圖  8  實(shí)驗(yàn)室測試場景

    圖  9  鎖相放大器的接收信號(hào)幅度

    圖  10  各測試點(diǎn)的接收電壓掃頻圖

    圖  11  接收電壓幅值隨距離的變化

    圖  12  測試的接收電壓歸一化近場方向圖

    圖  13  諧振頻率附近的掃頻特性

  • [1] DONG Cunzheng, HE Yifan, LI Menghui, et al. A portable very low frequency (VLF) communication system based on acoustically actuated magnetoelectric antennas[J]. IEEE Antennas and Wireless Propagation Letters, 2020, 19(3): 398–402. doi: 10.1109/LAWP.2020.2968604
    [2] 張鋒, 孫發(fā)曉, 渠曉東, 等. 基于旋轉(zhuǎn)永磁體的低頻通信技術(shù)研究[J]. 電子與信息學(xué)報(bào), 2022, 44(6): 2151–2157. doi: 10.11999/JEIT210274

    ZHANG Feng, SUN Faxiao, QU Xiaodong, et al. Research on low frequency communication technology based on rotating permanent magnet[J]. Journal of Electronics & Information Technology, 2022, 44(6): 2151–2157. doi: 10.11999/JEIT210274
    [3] 馬帥, 高夢(mèng)迪, 曹世昱, 等. 超低頻天線最優(yōu)波束成形設(shè)計(jì)研究[J]. 電子與信息學(xué)報(bào), 2023, 45(4): 1338–1345. doi: 10.11999/JEIT220119

    MA Shuai, GAO Mengdi, CAO Shiyu, et al. Research on optimal beamforming design of ultra-low frequency antenna[J]. Journal of Electronics & Information Technology, 2023, 45(4): 1338–1345. doi: 10.11999/JEIT220119
    [4] GLICKSTEIN J S, LIANG Jifu, CHOI S, et al. Power-efficient ELF wireless communications using electro-mechanical transmitters[J]. IEEE Access, 2020, 8: 2455–2471. doi: 10.1109/ACCESS.2019.2961708
    [5] CHEN Huaihao, LIANG Xianfeng, DONG Cunzheng, et al. Ultra-compact mechanical antennas[J]. Applied Physics Letters, 2020, 117(17): 170501. doi: 10.1063/5.0025362
    [6] 丁宏. DARPA機(jī)械天線項(xiàng)目或掀起軍事通信革命[J]. 現(xiàn)代軍事, 2017(4): 71–73.

    DING Hong. DARPA mechanical antenna project may be raised military communication revolution[J]. Conmilit, 2017(4): 71–73.
    [7] 崔勇, 吳明, 宋曉, 等. 小型低頻發(fā)射天線的研究進(jìn)展[J]. 物理學(xué)報(bào), 2020, 69(20): 208401. doi: 10.7498/aps.69.20200792

    CUI Yong, WU Ming, SONG Xiao, et al. Research progress of small low-frequency transmitting antenna[J]. Acta Physica Sinica, 2020, 69(20): 208401. doi: 10.7498/aps.69.20200792
    [8] LI Wanqing, LI Du, ZHOU Kaixiang, et al. A survey of antenna miniaturization technology based on the new mechanism of acoustic excitation[J]. IEEE Transactions on Antennas and Propagation, 2023, 71(1): 263–274. doi: 10.1109/TAP.2022.3220663
    [9] 周凱翔, 袁雪林, 李杜, 等. 基于壓電單晶的聲波激勵(lì)新機(jī)理小型化天線技術(shù)研究[C]. 2021年全國天線年會(huì)論文集, 寧波, 2021: 1974–1977.

    ZHOU Kaixiang, YUAN Xuelin, LI Du, et al. A study of antenna miniaturization technology on the new mechanism of acoustic excitation based on piezoelectric single crystal[C]. National Conference on Antennas 2021, Ningbo, 2021: 1974–1977.
    [10] GAO Zhaodong, SU Ming, LIU Yuanan, et al. Field-based circuit model of acoustically actuated piezoelectric antenna for characteristic evaluation and array applications[J]. IEEE Transactions on Antennas and Propagation, 2022, 70(12): 11422–11433. doi: 10.1109/TAP.2022.3209626
    [11] ANGILELLA A J, DAVIS N K, and MCMICHAEL I T. Electrically small piezocomposite strain antennas[J]. IEEE Transactions on Antennas and Propagation, 2022, 70(9): 7923–7933. doi: 10.1109/TAP.2022.3184485
    [12] 張勇, 周洪澄, 艾競, 等. 基于聲波驅(qū)動(dòng)的低頻小型化壓電天線設(shè)計(jì)[C]. 2021年全國天線年會(huì)論文集, 寧波, 2021: 1986–1988.

    ZHANG Yong, ZHOU Hongcheng, AI Jing, et al. Design of low-frequency miniaturized antenna based on acoustically actuated[C]. National Conference on Antennas 2021, Ningbo, China, 2021: 1986–1988.
    [13] DAMJANOVIC D. Contributions to the piezoelectric effect in ferroelectric single crystals and ceramics[J]. Journal of the American Ceramic Society, 2005, 88(10): 2663–2676. doi: 10.1111/j.1551-2916.2005.00671.x
    [14] ZHOU Zhengliu, KELLER S, SEPULVEDA A, et al. Modeling electromagnetic radiation induced from a piezoelectric shear-mode resonator[J]. IEEE Journal on Multiscale and Multiphysics Computational Techniques, 2016, 1: 129–138. doi: 10.1109/JMMCT.2016.2630721
    [15] DHIRAJ S and AMARATUNGA G A J. Electromagnetic radiation under explicit symmetry breaking[J]. Physical Review Letters, 2015, 114(14): 147701. doi: 10.1103/PhysRevLett.114.147701
    [16] KEMP M A, FRANZI M, HAASE A, et al. A high Q piezoelectric resonator as a portable VLF transmitter[J]. Nature Communications, 2019, 10(1): 1715. doi: 10.1038/s41467-019-09680-2
    [17] HASSANIEN A E, BREEN M, LI Minghuang, et al. Acoustically driven electromagnetic radiating elements[J]. Scientific Reports, 2020, 10(1): 17006. doi: 10.1038/s41598-020-73973-6
    [18] XU Jianchun, CAO Jinqing, GUO Menghao, et al. Metamaterial mechanical antenna for very low frequency wireless communication[J]. Advanced Composites and Hybrid Materials, 2021, 4(3): 761–767. doi: 10.1007/s42114-021-00278-1
    [19] 楊靖, 溫習(xí), 楊紹隆, 等. 基于壓電效應(yīng)的低頻無線通信機(jī)械天線[J]. 北京郵電大學(xué)學(xué)報(bào), 2022, 45(5): 66–71. doi: 10.13190/j.jbupt.2021-255

    YANG Jing, WEN Xi, YANG Shaolong, et al. Low-frequency wireless communication mechanical antenna based on piezoelectric effect[J]. Journal of Beijing University of Posts and Telecommunications, 2022, 45(5): 66–71. doi: 10.13190/j.jbupt.2021-255
    [20] CAO Jinqing, YAO Huiming, PANG Yachen, et al. Dual-band piezoelectric artificial structure for very low frequency mechanical antenna[J]. Advanced Composites and Hybrid Materials, 2022, 5(1): 410–418. doi: 10.1007/s42114-022-00431-4
    [21] WHEELER H A. Fundamental limitations of small antennas[J]. Proceedings of the IRE, 1947, 35(12): 1479–1484. doi: 10.1109/JRPROC.1947.226199
    [22] WHEELER H. Small antennas[J]. IEEE Transactions on Antennas and Propagation, 1975, 23(4): 462–469. doi: 10.1109/TAP.1975.1141115
    [23] CHU L J. Physical limitations of Omni-directional antennas[J]. Journal of Applied Physics, 1948, 19(12): 1163–1175. doi: 10.1063/1.1715038
    [24] MCLEAN J S. A re-examination of the fundamental limits on the radiation Q of electrically small antennas[J]. IEEE Transactions on Antennas and Propagation, 1996, 44(5): 672–676. doi: 10.1109/8.496253
    [25] 徐國凱. 小型化機(jī)械天線的研究[D]. [碩士論文], 電子科技大學(xué), 2021.

    XU Guokai. Research on miniaturized mechanical antennas[D]. [Master dissertation], University of Electronic Science and Technology of China, 2021.
    [26] NAN Tianxiang, LIN H, GAO Yuan, et al. Acoustically actuated ultra-compact NEMS magnetoelectric antennas[J]. Nature Communications, 2017, 8(1): 296. doi: 10.1038/s41467-017-00343-8
    [27] XIAO Ning, WANG Yao, CHEN Lei, et al. Low-frequency dual-driven magnetoelectric antennas with enhanced transmission efficiency and broad bandwidth[J]. IEEE Antennas and Wireless Propagation Letters, 2023, 22(1): 34–38. doi: 10.1109/LAWP.2022.3201070
    [28] TIAN Shiwei and NAN Tianxiang. Acoustically driven VLF antennas with high data rates[C]. 2021 IEEE International Symposium on Antennas and Propagation and USNC-URSI Radio Science Meeting (APS/URSI), Singapore, 2021: 497–498. doi: 10.1109/APS/URSI47566.2021.9704791.
    [29] 劉卿. 電小天線在甚低頻接收系統(tǒng)中的應(yīng)用研究[D]. [碩士論文], 武漢大學(xué), 2018.

    LIU Qing. The application of the electrically small antenna in very low frequency receiving system[D]. [Master dissertation], Wuhan University, 2018.
  • 加載中
圖(13)
計(jì)量
  • 文章訪問數(shù):  805
  • HTML全文瀏覽量:  499
  • PDF下載量:  155
  • 被引次數(shù): 0
出版歷程
  • 收稿日期:  2023-08-21
  • 修回日期:  2023-10-12
  • 網(wǎng)絡(luò)出版日期:  2023-10-20
  • 刊出日期:  2023-11-28

目錄

    /

    返回文章
    返回