一级黄色片免费播放|中国黄色视频播放片|日本三级a|可以直接考播黄片影视免费一级毛片

高級(jí)搜索

留言板

尊敬的讀者、作者、審稿人, 關(guān)于本刊的投稿、審稿、編輯和出版的任何問(wèn)題, 您可以本頁(yè)添加留言。我們將盡快給您答復(fù)。謝謝您的支持!

姓名
郵箱
手機(jī)號(hào)碼
標(biāo)題
留言?xún)?nèi)容
驗(yàn)證碼

一種基于有限內(nèi)存擬牛頓法的混合波束成形算法

嚴(yán)軍榮 江沛蓮 李沛

嚴(yán)軍榮, 江沛蓮, 李沛. 一種基于有限內(nèi)存擬牛頓法的混合波束成形算法[J]. 電子與信息學(xué)報(bào), 2024, 46(6): 2542-2548. doi: 10.11999/JEIT230656
引用本文: 嚴(yán)軍榮, 江沛蓮, 李沛. 一種基于有限內(nèi)存擬牛頓法的混合波束成形算法[J]. 電子與信息學(xué)報(bào), 2024, 46(6): 2542-2548. doi: 10.11999/JEIT230656
YAN Junrong, JIANG Peilian, LI Pei. A Hybrid Beamforming Algorithm Based on Limited-Broyden-Fletcher-Goldfarb-Shanno[J]. Journal of Electronics & Information Technology, 2024, 46(6): 2542-2548. doi: 10.11999/JEIT230656
Citation: YAN Junrong, JIANG Peilian, LI Pei. A Hybrid Beamforming Algorithm Based on Limited-Broyden-Fletcher-Goldfarb-Shanno[J]. Journal of Electronics & Information Technology, 2024, 46(6): 2542-2548. doi: 10.11999/JEIT230656

一種基于有限內(nèi)存擬牛頓法的混合波束成形算法

doi: 10.11999/JEIT230656 cstr: 32379.14.JEIT230656
基金項(xiàng)目: 國(guó)家自然科學(xué)基金(U21A20450, 62301204)
詳細(xì)信息
    作者簡(jiǎn)介:

    嚴(yán)軍榮:男,講師,研究方向?yàn)闊o(wú)線通信網(wǎng)絡(luò)、軟件定義網(wǎng)絡(luò)、視覺(jué)目標(biāo)跟蹤等

    江沛蓮:女,碩士生,研究方向?yàn)闊o(wú)線電通信系統(tǒng)、毫米波大規(guī)模MIMO系統(tǒng)中的預(yù)編碼技術(shù)

    李沛:女,講師,研究方向?yàn)槎嗖ㄊ鴤鬏?、空間資源優(yōu)化、延時(shí)感知節(jié)能方案等

    通訊作者:

    嚴(yán)軍榮 yjrcn@163.com

  • 中圖分類(lèi)號(hào): TN929.5

A Hybrid Beamforming Algorithm Based on Limited-Broyden-Fletcher-Goldfarb-Shanno

Funds: The National Natural Science Foundation of China (U21A20450, 62301204)
  • 摘要: 針對(duì)現(xiàn)有混合波束成形算法運(yùn)行時(shí)間長(zhǎng)、頻譜效率低、誤碼率高的問(wèn)題,該文提出一種基于有限內(nèi)存擬牛頓法的混合波束成形算法(LBFGS)。該算法首先通過(guò)數(shù)字預(yù)編碼器的最小二乘解構(gòu)建單變量目標(biāo)函數(shù);然后采用目標(biāo)函數(shù)的梯度近似黑塞矩陣的逆得到搜索方向并沿搜索方向更新模擬預(yù)編碼器,直到滿(mǎn)足停止條件;最后固定模擬預(yù)編碼器得到數(shù)字預(yù)編碼器。MATLAB仿真結(jié)果表明,LBFGS算法較現(xiàn)有MO算法減少了28%的運(yùn)行時(shí)間,頻譜效率提高了1.05%,誤碼率降低了1.06%。
  • 圖  1  點(diǎn)對(duì)點(diǎn)毫米波混合波束成形系統(tǒng)

    圖  2  不同波束成形算法的內(nèi)部循環(huán)總次數(shù)隨信噪比變化曲線

    圖  3  不同波束成形算法的運(yùn)行時(shí)間隨信噪比的變化曲線

    圖  4  不同波束成形算法的頻譜效率隨信噪比的變化曲線

    圖  5  不同波束成形算法的誤碼率隨信噪比的變化曲線

    算法1 計(jì)算搜索方向
     輸入:${\gamma _0}{\text{ = }}1$,${\mathrm{grad}}{{\boldsymbol{\mathcal{J}}}_{{{\boldsymbol{v}}_k}}}$,已存儲(chǔ)的梯度向量
     $ \{ {\boldsymbol{s}}_i^{(k)},{\boldsymbol{y}}_i^{(k)}\} _{i = k - m}^{k - 1} $
     輸出: 搜索方向${{\boldsymbol{\eta}} _k}$
     ${\boldsymbol{\mathcal{H}}}_k^0 = {\gamma _k}$;
     $ {\boldsymbolq7j3ldu95} \leftarrow {\mathrm{grad}}{{\boldsymbol{\mathcal{J}}}_{{v_k}}} $;
     If $m \ne 0$
      for $i = k - 1,k - 2, \cdots ,k - m$do
       ${\boldsymbol{\alpha}} \leftarrow {\rho _i} < {\boldsymbol{s}}_i^{(k)},{\boldsymbolq7j3ldu95} > $
       ${\boldsymbolq7j3ldu95} \leftarrow {\boldsymbolq7j3ldu95} - {\alpha _i}{\boldsymbol{y}}_i^{(k)}$
      end for
      ${\boldsymbol{e}} \leftarrow {\boldsymbol{\mathcal{H}}}_k^0{\boldsymbolq7j3ldu95}$
      for $i = k - m,k - m + 1, \cdots ,k - 1$
       $\beta \leftarrow {\rho _i} < {\boldsymbol{y}}_i^{(k)},{\boldsymbol{e}} > $
       $ {\boldsymbol{e}} \leftarrow {\boldsymbol{e}} + {\boldsymbol{s}}_i^{(k)} < {\varepsilon _i} - \beta > $
       end for
       ${{\boldsymbol{\eta}} _k} = - {\boldsymbol{e}}$
     else
      ${{\boldsymbol{\eta}} _k} = - {\boldsymbol{\mathcal{H}}}_k^0{\boldsymbolq7j3ldu95}$
     end if
    下載: 導(dǎo)出CSV
    算法2 基于有限內(nèi)存擬牛頓法的模擬預(yù)編碼器算法
     輸入:最優(yōu)全數(shù)字矩陣${{\boldsymbol{V}}_{\rm{opt}}}$,初始模擬波束成形矩陣${\boldsymbol{V}}_{\rm{RF}}^0$,內(nèi)存
     容量$\forall M \in \mathbb{Z}$且$M > 0$。
     輸出:${{\boldsymbol{V}}_{\rm{RF}}}$
     初始化:內(nèi)部循環(huán)次數(shù)$k = 0$,內(nèi)存占用量$m = 0$
     根據(jù)式(10)計(jì)算黎曼梯度${\mathrm{grad}}{{\boldsymbol{\mathcal{J}}}_{{{\boldsymbol{v}}_0}}}$
     while梯度的范數(shù)達(dá)到閾值${\mu _2}$
      根據(jù)算法1計(jì)算搜索方向${{\boldsymbol{\eta}} _k}$
      線搜索并回縮得到${{\boldsymbol{v}}_{k + 1}}{\text{ = }}{{{R}}_{{{\boldsymbol{v}}_k}}}({\alpha _k}{{\boldsymbol{\eta}} _k})$
      計(jì)算黎曼梯度${\mathrm{grad}}{{\boldsymbol{\mathcal{J}}}_{{{\boldsymbol{v}}_{k + 1}}}}$
      計(jì)算$ {\boldsymbol{s}}_k^{(k + 1)} $,$ {\boldsymbol{y}}_k^{(k + 1)} $,${\rho _{k + 1}} = 1/ < {\boldsymbol{s}}_k^{(k + 1)},{\boldsymbol{y}}_k^{(k + 1)} > $
      if 滿(mǎn)足存儲(chǔ)條件
       計(jì)算${\gamma _{k + 1}} = < {\boldsymbol{s}}_k^{(k + 1)},{\boldsymbol{y}}_k^{(k + 1)} > /||{\boldsymbol{y}}_k^{(k + 1)}|{|^2}$
       if溢出
        丟棄$ {\boldsymbol{s}}_{k - M}^{(k)} $,$ {\boldsymbol{y}}_{k - M}^{(k)} $;
       end if
       歷史梯度向量傳輸
       存儲(chǔ)$ {\text{\{ }}{\boldsymbol{s}}_k^{(k + 1)},{\boldsymbol{y}}_k^{(k + 1)}{\text{\} }} $
       若$m < M$,那么$m = m + 1$,否則$m = M$
      else
       ${\gamma _{k + 1}} = {\gamma _k}$;
      end if
      $k \leftarrow k + 1$
     end
    下載: 導(dǎo)出CSV
  • [1] SAAD W, BENNIS M, and CHEN Mingzhe. A vision of 6G wireless systems: Applications, trends, technologies, and open research problems[J]. IEEE Network, 2020, 34(3): 134–142. doi: 10.1109/MNET.001.1900287.
    [2] ZHANG Jun, YU Xianghao, and LETAIEF K B. Hybrid beamforming for 5G and beyond millimeter-wave systems: A holistic view[J]. IEEE Open Journal of the Communications Society, 2020, 1: 77–91. doi: 10.1109/OJCOMS.2019.2959595.
    [3] ABDULLAH Q, SALH A, MOHDSHAH N S, et al. A brief survey and investigation of hybrid beamforming for millimeter waves in 5G massive MIMO systems[J]. arXiv: 2105.00180, 2021. doi: 10.48550/arXiv.2105.00180.
    [4] RIHAN M, SOLIMAN T A, XU Chen, et al. Taxonomy and performance evaluation of hybrid beamforming for 5G and beyond systems[J]. IEEE Access, 2020, 8: 74605–74626. doi: 10.1109/ACCESS.2020.2984548.
    [5] UWAECHIA A N and MAHYUDDIN N M. A comprehensive survey on millimeter wave communications for fifth-generation wireless networks: feasibility and challenges[J]. IEEE Access, 2020, 8: 62367–62414. doi: 10.1109/ACCESS.2020.2984204.
    [6] ULLAH M S, SARKER S C, ASHRAF Z B, et al. Spectral efficiency of multiuser massive MIMO-OFDM THz wireless systems with hybrid beamforming under inter-carrier interference[C]. Proceedings of the 12th International Conference on Electrical and Computer Engineering (ICECE), Dhaka, Bangladesh, 2022: 228–231. doi: 10.1109/ICECE57408.2022.10089136.
    [7] LIU Ying and WANG Jintao. Low-complexity OFDM-based hybrid precoding for multiuser massive MIMO systems[J]. IEEE Wireless Communications Letters, 2020, 9(3): 263–266. doi: 10.1109/lwc.2019.2929518.
    [8] ZHAO Xingyu, LIN Tian, ZHU Yu, et al. Partially-connected hybrid beamforming for spectral efficiency maximization via a weighted MMSE equivalence[J]. IEEE Transactions on Wireless Communications, 2021, 20(12): 8218–8232. doi: 10.1109/TWC.2021.3091524.
    [9] 趙峰, 何曉華. 混合動(dòng)態(tài)連接結(jié)構(gòu)的多用戶(hù)多流混合預(yù)編碼[J]. 電子與信息學(xué)報(bào), 2021, 43(9): 2647–2653. doi: 10.11999/JEIT 200441.

    ZHAO Feng and HE Xiaohua. Multi-user multi-stream hybrid precoding with hybrid dynamic connection structure[J]. Journal of Electronics & Information Technology, 2021, 43(9): 2647–2653. doi: 10.11999/JEIT 200441.
    [10] AYACH O E, RAJAGOPAL S, ABU-SURRA S, et al. Spatially sparse precoding in millimeter wave MIMO systems[J]. IEEE Transactions on Wireless Communications, 2014, 13(3): 1499–1513. doi: 10.1109/TWC.2014.011714.130846.
    [11] YU Xianghao, SHEN J C, ZHANG Jun, et al. Alternating minimization algorithms for hybrid precoding in millimeter wave MIMO systems[J]. IEEE Journal of Selected Topics in Signal Processing, 2016, 10(3): 485–500. doi: 10.1109/JSTSP.2016.2523903.
    [12] JIN Juening, ZHENG Y R, CHEN Wen, et al. Hybrid precoding for millimeter wave MIMO systems: A matrix factorization approach[J]. IEEE Transactions on Wireless Communications, 2018, 17(5): 3327–3339. doi: 10.48550/arXiv.2003.11972.
    [13] LI Jinmeng, CHENG Zhiqun, and LI Hang. Hybrid precoding scheme in millimeter wave massive MIMO based on stochastic gradient descent[C]. Proceedings of 2021 IEEE Asia Conference on Information Engineering (ACIE), Sanya, China, 2021: 22–26. doi: 10.1109/ACIE51979.2021.9381072.
    [14] 劉文龍, 黃雯靜, 王本巍, 等. 毫米波單用戶(hù)多天線系統(tǒng)的混合預(yù)編碼設(shè)計(jì)[J]. 電子與信息學(xué)報(bào), 2022, 44(2): 620–626. doi: 10.11999/JEIT202019.

    LIU Wenlong, HUANG Wenjing, WANG Benwei, et al. Hybrid precoding design in millimeter wave single-user large-scale multiple-input multiple-output system[J]. Journal of Electronics & Information Technology, 2022, 44(2): 620–626. doi: 10.11999/JEIT202019.
    [15] HUANG Wen. Optimization algorithms on Riemannian manifolds with applications[D]. [Ph. D. dissertation], Florida State University, 2013.
    [16] ZANG Guangda, HU Lingna, YANG Feng, et al. Partially-connected hybrid beamforming for multi-user massive MIMO systems[J]. IEEE Access, 2020, 8: 215287–215298. doi: 10.1109/ACCESS.2020.3040508.
    [17] SONG Nuan, YANG Tao, and SUN Huan. Overlapped subarray based hybrid beamforming for millimeter wave multiuser massive MIMO[J]. IEEE Signal Processing Letters, 2017, 24(5): 550–554. doi: 10.1109/LSP.2017.268 1689.
    [18] BOUMAL N. An Introduction to Optimization on Smooth Manifolds[M]. Cambridge: Cambridge University Press, 2023: 5–151. doi: 10.1017/9781009166164.
    [19] KASAI H. Fast optimization algorithm on complex oblique manifold for hybrid precoding in millimeter wave MIMO systems[C]. Proceedings of 2018 IEEE Global Conference on Signal and Information Processing (GlobalSIP), Anaheim, USA, 2018: 1266–1270. doi: 10.1109/GlobalSIP.2018.8646553.
    [20] LIN Tian, CONG Jiaqi, ZHU Yu, et al. Hybrid beamforming for millimeter wave systems using the MMSE criterion[J]. IEEE Transactions on Communications, 2019, 67(5): 3693–3708. doi: 10.1109/TCOMM.2019.2893632.
  • 加載中
圖(5) / 表(2)
計(jì)量
  • 文章訪問(wèn)數(shù):  234
  • HTML全文瀏覽量:  282
  • PDF下載量:  31
  • 被引次數(shù): 0
出版歷程
  • 收稿日期:  2023-07-03
  • 修回日期:  2023-11-13
  • 錄用日期:  2023-11-14
  • 網(wǎng)絡(luò)出版日期:  2023-11-21
  • 刊出日期:  2024-06-30

目錄

    /

    返回文章
    返回