DroneRFa:用于偵測(cè)低空無人機(jī)的大規(guī)模無人機(jī)射頻信號(hào)數(shù)據(jù)集
doi: 10.11999/JEIT230570 cstr: 32379.14.JEIT230570
-
1.
浙江大學(xué),浙江省協(xié)同感知與自主無人系統(tǒng)重點(diǎn)實(shí)驗(yàn)室 杭州 310027
-
2.
浙江大學(xué)控制科學(xué)與工程學(xué)院 杭州 310027
-
3.
河北省承德市公安局 承德 067000
DroneRFa: A Large-scale Dataset of Drone Radio Frequency Signals for Detecting Low-altitude Drones
-
1.
Key Laboratory of Collaborative Sensing and Autonomous Unmanned Systems of Zhejiang Province, Zhejiang University, Hangzhou 310027, China
-
2.
College of Control Science and Engineering, Zhejiang University, Hangzhou 310027, China
-
3.
Chengde City’s Police Department of Hebei Province, Chengde 067000, China
-
摘要: 為研究與發(fā)展反無人機(jī)檢測(cè)識(shí)別技術(shù),該文公開了一個(gè)名為DroneRFa的大規(guī)模無人機(jī)射頻信號(hào)數(shù)據(jù)集。該數(shù)據(jù)集使用軟件無線電設(shè)備探測(cè)無人機(jī)與遙控器相互通信的射頻信號(hào),包含城市戶外場(chǎng)景下運(yùn)動(dòng)無人機(jī)信號(hào)9類、城市室內(nèi)場(chǎng)景下信號(hào)15類以及背景參照信號(hào)1類。每類數(shù)據(jù)有不少于12個(gè)片段,每個(gè)片段包含1億個(gè)以上的采樣點(diǎn)。數(shù)據(jù)采集覆蓋了3個(gè)ISM無線電頻段,記錄無人機(jī)多頻通信的真實(shí)活動(dòng)。該數(shù)據(jù)集具有詳細(xì)的無人機(jī)戶外飛行距離和工作頻段標(biāo)注,以前綴字符結(jié)合二進(jìn)制編碼的形式方便用戶靈活訪問所需數(shù)據(jù)。此外,該文提供了基于頻譜可視統(tǒng)計(jì)特征和基于深度學(xué)習(xí)表征的兩種無人機(jī)識(shí)別方案,以驗(yàn)證數(shù)據(jù)集的可靠和有效性。
-
關(guān)鍵詞:
- 人工智能 /
- 反無人機(jī)檢測(cè) /
- 頻譜學(xué)習(xí) /
- 信號(hào)識(shí)別
Abstract: A large-scale dataset of drone radio frequency signals, namely DroneRFa, is constructed to research and develop anti-drone detection and recognition technologies. This dataset uses a software-defined radio device to monitor communication signals between drones and their controllers, including 9 types of flying drone signals in an outdoor environment, 15 types of drone signals in an indoor environment, and 1 type of background signal as a reference. Each type of data has no less than 12 segments, each containing more than 100 million sampling points. The data acquisition covered three Industrial Scientific Medical (ISM) radio bands, and recorded the multifrequency communication activity of drones. The dataset has detailed flying distance and communication frequency band labeling, which are represented with prefix characters and binary codes to facilitate easy access to specific data required by users. Furthermore, this paper proposes two drone identification schemes based on spectral and visual statistical features and deep learning representation to verify the reliability and validity of the dataset. -
表 1 近年全球無人機(jī)事件
時(shí)間 國(guó)家(地區(qū)) 行業(yè)/性質(zhì) 事件 2021年10月7日 美國(guó)(加利福尼亞) 走私 一架微型大疆(DJI)無人機(jī)通過美國(guó)邊境墻走私其自身重量的毒品 2022年4月19日 法國(guó)(馬賽) 執(zhí)法 無人機(jī)飛手因在法國(guó)總統(tǒng)馬克龍講話的禁區(qū)內(nèi)駕駛無人機(jī)被捕 2022年4月23日 意大利(羅馬) 公共安全 游客操作無人機(jī)不當(dāng)導(dǎo)致無人機(jī)撞向羅馬和比薩的意大利地標(biāo) 2022年7月27日 中國(guó)(??? 公共安全 攝影師在鐵路線上擅自操作DJI Mini 2無人機(jī)被??阼F路公安逮捕并罰款 2022年9月2日 美國(guó)(加利福尼亞) 個(gè)人隱私 無人機(jī)非法入侵住宅窺探女子隱私 2022年9月28日 美國(guó)(華盛頓) 政府 無人機(jī)進(jìn)入禁區(qū)造成白宮緊急疏散 2022年10月2日 中國(guó)(武漢) 個(gè)人隱私 一名婦女指控?zé)o人機(jī)多次侵犯她的隱私并拍攝她住宅信息 2023年2月21日 愛爾蘭(都柏林) 機(jī)場(chǎng) 無人機(jī)入侵導(dǎo)致都柏林機(jī)場(chǎng)的航班暫時(shí)停止 下載: 導(dǎo)出CSV
表 2 反無人機(jī)探測(cè)基本手段優(yōu)劣勢(shì)比較
探測(cè)手段 探測(cè)距離 優(yōu)勢(shì) 劣勢(shì) 視覺 適中(1~2 km) 成本適中,屬于被動(dòng)探測(cè)隱蔽性好,
結(jié)果直觀,對(duì)環(huán)境無影響易受遮擋物影響,對(duì)光線強(qiáng)度變化敏感,紅外傳感器成本高,光電傳感器無法在夜間工作 聲音 近(<150 m) 成本低,屬于被動(dòng)探測(cè)隱蔽性好,對(duì)環(huán)境無影響 城市環(huán)境受噪聲影響大 雷達(dá) 較遠(yuǎn)(3~8 km) 覆蓋范圍廣,可測(cè)目標(biāo)運(yùn)動(dòng)速度 受雜波干擾大,低空低速目標(biāo)探測(cè)難,設(shè)備成本高,瞬時(shí)輻射強(qiáng)不適用于城市環(huán)境 射頻(被動(dòng)) 遠(yuǎn)(1~5 km) 電磁特性不易隱藏可靠性好,屬于被動(dòng)探測(cè)隱蔽性好,對(duì)環(huán)境無影響 受同頻雜波干擾大,設(shè)備成本較高 下載: 導(dǎo)出CSV
表 3 二進(jìn)制編碼與標(biāo)簽對(duì)應(yīng)關(guān)系
前綴字符 二進(jìn)制編碼 含義說明(T型號(hào)/D探測(cè)距離/S信號(hào)片段) T 0000 背景(含藍(lán)牙、WiFi) T 0001 DJI Phantom 3 T 0010 DJI Phantom 4 Pro T 0011 DJI MATRICE 200 T 0100 DJI MATRICE 100 T 0101 DJI Air 2S T 0110 DJI Mini 3 Pro T 0111 DJI Inspire 2 T 1000 DJI Mavic Pro T 1001 DJI Mini 2 T 1010 DJI Mavic 3 T 1011 DJI MATRICE 300 T 1100 DJI Phantom 4 Pro RTK T 1101 DJI MATRICE 30T T 1110 DJI AVATA T 1111 DJI通信模塊自組機(jī) T 10000 DJI MATRICE 600 Pro T 10001 VBar 飛控器 T 10010 FrSky X20 飛控器 T 10011 Futaba T6IZ 飛控器 T 10100 Taranis Plus 飛控器 T 10101 RadioLink AT9S 飛控器 T 10110 Futaba T14SG 飛控器 T 10111 云卓 T12 飛控器 T 11000 云卓 T10 飛控器 D 00 20~40 m D 01 40~80 m D 10 80~150 m S 0000~0111 設(shè)置初始通信在915 MHz或2.4 GHz S 1000~1111 若設(shè)備支持則切換至2.4 GHz或5.8 GHz 下載: 導(dǎo)出CSV
表 4 無人機(jī)射頻信號(hào)統(tǒng)計(jì)特征表
機(jī)型 跳頻
信號(hào)
帶寬
(MHz)跳頻
信號(hào)
時(shí)長(zhǎng)
(ms)最鄰跳
頻塊時(shí)
間間
隔(ms)最鄰跳
頻塊帶
寬間
隔(MHz)圖傳
信號(hào)
周期
(ms)圖傳
信號(hào)
占空
比(%)Phantom 3 1.8 1.8 5.2 28 / / Phantom 4 Pro 1.2 2.2 12 0.45 14 68 MATRICE 200 1.2 2.2 12 21 14 68 MATRICE 100 1.2 2.2 12 6.8 / / Air 2S 2.2 0.52 / / / / Mini 3 Pro 2.2 0.52 / / / / Inspire 2 1.2 2.2 12 21 14 68 Mavic Pro 1.1 0.52 / / / / Mini 2 1.1 0.52 / / / / Mavic 3 2.2 0.52 / / / / MATRICE 300 2.2 0.52 / / / / Phantom 4 Pro RTK 1.1 0.52 5.5 8.2 / / MATRICE 30T 2.2 0.52 / / / / AVATA 1.1 0.52 / / 10 12 大疆通信模塊自組機(jī) 1.1 0.52 / / / / MATRICE 600 Pro 1.2 2.2 12 40 14 68 VBar 飛控器 0.72 1.8 / / / / FrSky X20 飛控器 0.42 2.8 4.0 4.2 / / Futaba T6IZ 飛控器 2.0 1.4 / / / / Taranis Plus飛控器 0.75 7.9 12 1.0 / / RadioLink AT9S飛控器 5.0 2.1 / / / / Futaba T14SG 飛控器 2.0 2.0 5.0 20 / / 云卓 T12 飛控器 1.7 4.6 / / / / 云卓 T10 飛控器 1.8 0.3 / / / / 下載: 導(dǎo)出CSV
表 5 深度神經(jīng)網(wǎng)絡(luò)模型在不同輸入信號(hào)下的識(shí)別性能比較
組號(hào) 信號(hào)長(zhǎng)度($T$) 分辨率($N$) 準(zhǔn)確率 精確率 召回率 F值 fps 1(基準(zhǔn)) 1024 1024 0.9773 0.9776 0.9774 0.9773 53 2 768 1024 0.9577 0.9578 0.9563 0.9566 66 3 512 1024 0.9030 0.9051 0.9016 0.9016 93 4 256 1024 0.7271 0.7373 0.7278 0.7301 154 5 1024 512 0.9686 0.9704 0.9689 0.9693 92 6 1024 256 0.9145 0.9188 0.9146 0.9154 154 7 1024 128 0.8785 0.8859 0.8799 0.8810 217 下載: 導(dǎo)出CSV
-
[1] BIKOV T, MIHAYLOV G, ILIEV T, et al. Drone surveillance in the modern agriculture[C]. Proceedings of the 8th International Conference on Energy Efficiency and Agricultural Engineering, Ruse, Bulgaria, 2022: 1–4. [2] QUBAA A R, THANNOUN R G, and MOHAMMED R M. UAVs/drones for photogrammetry and remote sensing: Nineveh archaeological region as a case study[J]. World Journal of Advanced Research and Reviews, 2022, 14(3): 358–368. doi: 10.30574/wjarr.2022.14.3.0539. [3] QU Chengyi, SORBELLI F B, SINGH R, et al. Environmentally-aware and energy-efficient multi-drone coordination and networking for disaster response[J]. IEEE Transactions on Network and Service Management, 2023, 20(2): 1093–1109. doi: 10.1109/TNSM.2023.3243543. [4] Team DRONEII. com. Global drone market report 2022–2030[EB/OL]. https://droneii.com/product/drone-market-report, 2023. [5] Dedrone. Worldwide drone incidents[EB/OL]. https://www.dedrone.com/resources/incidents-new/all, 2023. [6] 宋晨, 周良將, 吳一戎, 等. 基于自相關(guān)-倒譜聯(lián)合分析的無人機(jī)旋翼轉(zhuǎn)動(dòng)頻率估計(jì)方法[J]. 電子與信息學(xué)報(bào), 2019, 41(2): 255–261. doi: 10.11999/JEIT180399.SONG Chen, ZHOU Liangjiang, WU Yirong, et al. An estimation method of rotation frequency of unmanned aerial vehicle based on auto-correlation and cepstrum[J]. Journal of Electronics &Information Technology, 2019, 41(2): 255–261. doi: 10.11999/JEIT180399. [7] 楊勇, 王雪松, 張斌. 基于時(shí)頻檢測(cè)與極化匹配的雷達(dá)無人機(jī)檢測(cè)方法[J]. 電子與信息學(xué)報(bào), 2021, 43(3): 509–515. doi: 10.11999/JEIT200768.YANG Yong, WANG Xuesong, and ZHANG Bin. Radar detection of unmanned aerial vehicles based on time-frequency detection and polarization matching[J]. Journal of Electronics &Information Technology, 2021, 43(3): 509–515. doi: 10.11999/JEIT200768. [8] 張霞, 余道杰, 劉廣怡, 等. 一種無人機(jī)蜂群飛行同步檢測(cè)和抑制方案[J]. 電子與信息學(xué)報(bào), 2023, 45(12): 4317–4326.ZHANG Xia, YU Daojie, LIU Guangyi, et al. Countermeasures against UAV swarm through detection and suppression of fly synchronization[J]. Journal of Electronics & Information Technology, 2023, 45(12): 4317–4326. [9] SHI Xiufang, YANG Chaoqun, XIE Weige, et al. Anti-drone system with multiple surveillance technologies: Architecture, implementation, and challenges[J]. IEEE Communications Magazine, 2018, 56(4): 68–74. doi: 10.1109/MCOM.2018.1700430. [10] SHI Zhiguo, CHANG Xianyu, YANG Chaoqun, et al. An acoustic-based surveillance system for amateur drones detection and localization[J]. IEEE Transactions on Vehicular Technology, 2020, 69(3): 2731–2739. doi: 10.1109/TVT.2020.2964110. [11] ZHANG Zongyu, SHI Zhiguo, and GU Yujie. Ziv-Zakai bound for DOAs estimation[J]. IEEE Transactions on Signal Processing, 2023, 71: 136–149. doi: 10.1109/TSP.2022.3229946. [12] GUVENC I, KOOHIFAR F, SINGH S, et al. Detection, tracking, and interdiction for amateur drones[J]. IEEE Communications Magazine, 2018, 56(4): 75–81. doi: 10.1109/MCOM.2018.1700455. [13] KHAN M A, MENOUAR H, ELDEEB A, et al. On the detection of unauthorized drones-techniques and future perspectives: A review[J]. IEEE Sensors Journal, 2022, 22(12): 11439–11455. doi: 10.1109/JSEN.2022.3171293. [14] ALLAHHAM M H D S, AL-SA'D M F, AL-ALI A, et al. DroneRF dataset: A dataset of drones for RF-based detection, classification and identification[J]. Data in Brief, 2019, 26: 104313. doi: 10.1016/j.dib.2019.104313. [15] BISIO I, GARIBOTTO C, LAVAGETTO F, et al. Blind detection: Advanced techniques for WiFi-based drone surveillance[J]. IEEE Transactions on Vehicular Technology, 2019, 68(1): 938–946. doi: 10.1109/TVT.2018.2884767. [16] XIE Yuelei, JIANG Ping, GU Yi, et al. Dual-source detection and identification system based on UAV radio frequency signal[J]. IEEE Transactions on Instrumentation and Measurement, 2021, 70: 2006215. doi: 10.1109/TIM.2021.3103565. [17] EZUMA M, ERDEN F, ANJINAPPA C K, et al. Detection and classification of UAVs using RF fingerprints in the presence of Wi-Fi and Bluetooth interference[J]. IEEE Open Journal of the Communications Society, 2020, 1: 60–76. doi: 10.1109/OJCOMS.2019.2955889. [18] FU Hua, ABEYWICKRAMA S, ZHANG Lihao, et al. Low-complexity portable passive drone surveillance via SDR-based signal processing[J]. IEEE Communications Magazine, 2018, 56(4): 112–118. doi: 10.1109/MCOM.2018.1700424. [19] ALSOLIMAN A, RIGONI G, LEVORATO M, et al. COTS drone detection using video streaming characteristics[C]. Proceedings of the 22nd International Conference on Distributed Computing and Networking, Nara, Japan, 2021: 166–175. [20] ALIPOUR-FANID A, DABAGHCHIAN M, WANG Ning, et al. Machine learning-based delay-aware UAV detection and operation mode identification over encrypted Wi-Fi traffic[J]. IEEE Transactions on Information Forensics and Security, 2020, 15: 2346–2360. doi: 10.1109/TIFS.2019.2959899. [21] AL-SA’D M F, AL-ALI A, MOHAMED A, et al. RF-based drone detection and identification using deep learning approaches: An initiative towards a large open source drone database[J]. Future Generation Computer Systems, 2019, 100: 86–97. doi: 10.1016/j.future.2019.05.007. [22] BASAK S, RAJENDRAN S, POLLIN S, et al. Combined RF-based drone detection and classification[J]. IEEE Transactions on Cognitive Communications and Networking, 2022, 8(1): 111–120. doi: 10.1109/TCCN.2021.3099114. [23] HE Kaiming, ZHANG Xiangyu, REN Shaoqing, et al. Deep residual learning for image recognition[C]. Proceedings of 2016 IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, USA, 2016: 770–778. -